Spaces:
Sleeping
Sleeping
umanr18075
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import joblib
|
6 |
+
|
7 |
+
# Load the model from Hugging Face
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model_from_hf(repo_id, filename):
|
10 |
+
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
11 |
+
model = joblib.load(file_path)
|
12 |
+
return model
|
13 |
+
|
14 |
+
# App settings
|
15 |
+
st.set_page_config(page_title="Power Prediction App", layout="centered")
|
16 |
+
|
17 |
+
# Sidebar inputs
|
18 |
+
st.sidebar.title("Model Integration Settings")
|
19 |
+
repo_id = st.sidebar.text_input("Hugging Face Repo ID", "random_forest_power_model")
|
20 |
+
filename = st.sidebar.text_input("Model Filename", "model.joblib")
|
21 |
+
|
22 |
+
# Main app
|
23 |
+
st.title("Power Prediction using Random Forest Model")
|
24 |
+
st.write("Enter the input values for current and voltage to predict power.")
|
25 |
+
|
26 |
+
# Load the model
|
27 |
+
try:
|
28 |
+
model = load_model_from_hf(repo_id, filename)
|
29 |
+
st.success("Model loaded successfully from Hugging Face!")
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"Error loading model: {e}")
|
32 |
+
st.stop()
|
33 |
+
|
34 |
+
# User input
|
35 |
+
current = st.number_input("Enter Current (I) in Amperes:", min_value=0.0, value=10.0, step=0.1)
|
36 |
+
voltage = st.number_input("Enter Voltage (V) in Volts:", min_value=0.0, value=220.0, step=1.0)
|
37 |
+
|
38 |
+
# Predict power
|
39 |
+
if st.button("Predict Power"):
|
40 |
+
try:
|
41 |
+
input_data = pd.DataFrame({"Current": [current], "Voltage": [voltage]})
|
42 |
+
prediction = model.predict(input_data)
|
43 |
+
st.success(f"Predicted Power (P): {prediction[0]:.2f} W")
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Error in prediction: {e}")
|
46 |
+
|
47 |
+
# Option to upload new models
|
48 |
+
st.sidebar.header("Upload a New Model")
|
49 |
+
uploaded_file = st.sidebar.file_uploader("Upload a .joblib model file", type=["joblib"])
|
50 |
+
if uploaded_file:
|
51 |
+
with open("uploaded_model.joblib", "wb") as f:
|
52 |
+
f.write(uploaded_file.getbuffer())
|
53 |
+
st.sidebar.success("Model uploaded! Use 'uploaded_model.joblib' as the filename.")
|
54 |
+
|
55 |
+
# Footer
|
56 |
+
st.write("---")
|
57 |
+
st.write("This app uses a Random Forest model hosted on Hugging Face to predict power.")
|