File size: 9,053 Bytes
bd86ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import absolute_import, division, print_function

import torch
import torch.nn as nn
from torch.autograd import Variable

import os, sys, errno
import argparse
import time
import numpy as np
import cv2
import matplotlib.pyplot as plt
from tqdm import tqdm
import open3d as o3d

from utils import post_process_depth, D_to_cloud, flip_lr, inv_normalize

from networks.NewCRFDepth import NewCRFDepth


def convert_arg_line_to_args(arg_line):
    for arg in arg_line.split():
        if not arg.strip():
            continue
        yield arg


parser = argparse.ArgumentParser(description='IEBins PyTorch implementation.', fromfile_prefix_chars='@')
parser.convert_arg_line_to_args = convert_arg_line_to_args

parser.add_argument('--model_name', type=str, help='model name', default='iebins')
parser.add_argument('--encoder', type=str, help='type of encoder, base07, large07, tiny07', default='large07')
parser.add_argument('--data_path', type=str, help='path to the data', required=True)
parser.add_argument('--filenames_file', type=str, help='path to the filenames text file', required=True)
parser.add_argument('--input_height', type=int, help='input height', default=480)
parser.add_argument('--input_width', type=int, help='input width', default=640)
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10)
parser.add_argument('--checkpoint_path', type=str, help='path to a specific checkpoint to load', default='')
parser.add_argument('--dataset', type=str, help='dataset to train on', default='nyu')
parser.add_argument('--do_kb_crop', help='if set, crop input images as kitti benchmark images', action='store_true')
parser.add_argument('--pred_clouds', help='if set, pred cloud points', action='store_true')
parser.add_argument('--save_viz', help='if set, save visulization of the outputs', action='store_true')

if sys.argv.__len__() == 2:
    arg_filename_with_prefix = '@' + sys.argv[1]
    args = parser.parse_args([arg_filename_with_prefix])
else:
    args = parser.parse_args()

if args.dataset == 'kitti' or args.dataset == 'nyu':
    from dataloaders.dataloader import NewDataLoader

model_dir = os.path.dirname(args.checkpoint_path)
sys.path.append(model_dir)


def get_num_lines(file_path):
    f = open(file_path, 'r')
    lines = f.readlines()
    f.close()
    return len(lines)


def test(params):
    """Test function."""
    args.mode = 'test'
    dataloader = NewDataLoader(args, 'test')
    
    model = NewCRFDepth(version='large07', inv_depth=False, max_depth=args.max_depth)
    model = torch.nn.DataParallel(model)
    
    checkpoint = torch.load(args.checkpoint_path)
    model.load_state_dict(checkpoint['model'])
    model.eval()
    model.cuda()

    num_params = sum([np.prod(p.size()) for p in model.parameters()])
    print("Total number of parameters: {}".format(num_params))

    num_test_samples = get_num_lines(args.filenames_file)

    with open(args.filenames_file) as f:
        lines = f.readlines()

    print('now testing {} files with {}'.format(num_test_samples, args.checkpoint_path))

    pred_depths = []
    pred_clouds = []
    start_time = time.time()
    with torch.no_grad():
        for _, sample in enumerate(tqdm(dataloader.data)):
            image = Variable(sample['image'].cuda())
            inv_K_p = Variable(sample['inv_K_p'].cuda())
            b, _, h, w = image.shape
            depth_to_cloud = D_to_cloud(b, h, w).cuda()

            # Predict
            pred_depths_r_list, _, _ = model(image)
            post_process = True
            if post_process:
                image_flipped = flip_lr(image)
                pred_depths_r_list_flipped, _, _ = model(image_flipped)
                pred_depth = post_process_depth(pred_depths_r_list[-1], pred_depths_r_list_flipped[-1])
            
            if args.pred_clouds:
                if args.dataset == 'nyu':
                    color = inv_normalize(image[0, :, :, :]).permute(1, 2, 0)[45:472, 43:608, :].reshape(-1, 3).cpu().numpy()
                    points = depth_to_cloud(pred_depth, inv_K_p).reshape(1, h, w, 3)[:, 45:472, 43:608, :].reshape(1, -1, 3)
                    points = points.cpu().numpy().squeeze()
                else:
                    color = inv_normalize(image[0, :, :, :]).permute(1, 2, 0).reshape(-1, 3).cpu().numpy()
                    points = depth_to_cloud(pred_depth, inv_K_p)
                    points = points.cpu().numpy().squeeze()
                pc = o3d.geometry.PointCloud()
                pc.points = o3d.utility.Vector3dVector(points)
                pc.colors = o3d.utility.Vector3dVector(color)

                pred_clouds.append(pc)

            pred_depth = pred_depth.cpu().numpy().squeeze()

            if args.do_kb_crop:
                height, width = 352, 1216
                top_margin = int(height - 352)
                left_margin = int((width - 1216) / 2)
                pred_depth_uncropped = np.zeros((height, width), dtype=np.float32)
                pred_depth_uncropped[top_margin:top_margin + 352, left_margin:left_margin + 1216] = pred_depth
                pred_depth = pred_depth_uncropped

            pred_depths.append(pred_depth)

    elapsed_time = time.time() - start_time
    print('Elapesed time: %s' % str(elapsed_time))
    print('Done.')
    
    save_name = 'models/result_' + args.model_name
    
    print('Saving result pngs..')
    if not os.path.exists(save_name):
        try:
            os.mkdir(save_name)
            os.mkdir(save_name + '/raw')
            os.mkdir(save_name + '/cmap')
            os.mkdir(save_name + '/rgb')
            os.mkdir(save_name + '/gt')
            os.mkdir(save_name + '/cloud')
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise
    
    for s in tqdm(range(num_test_samples)):
        if args.dataset == 'kitti':
            date_drive = lines[s].split('/')[1]
            filename_pred_png = save_name + '/raw/' + date_drive + '_' + lines[s].split()[0].split('/')[-1].replace(
                '.jpg', '.png')
            filename_pred_ply = save_name + '/cloud/' + date_drive + '_' + lines[s].split()[0].split('/')[-1][:-4] + '_' + 'iebins' + '.ply'
            filename_cmap_png = save_name + '/cmap/' + date_drive + '_' + lines[s].split()[0].split('/')[
                -1].replace('.jpg', '.png')
            filename_image_png = save_name + '/rgb/' + date_drive + '_' + lines[s].split()[0].split('/')[-1]
        elif args.dataset == 'kittipred':
            filename_pred_png = save_name + '/raw/' + lines[s].split()[0].split('/')[-1].replace('.jpg', '.png')
            filename_cmap_png = save_name + '/cmap/' + lines[s].split()[0].split('/')[-1].replace('.jpg', '.png')
            filename_image_png = save_name + '/rgb/' + lines[s].split()[0].split('/')[-1]
        else:
            scene_name = lines[s].split()[0].split('/')[0]
            filename_pred_png = save_name + '/raw/' + scene_name + '_' + lines[s].split()[0].split('/')[1].replace(
                '.jpg', '.png')
            filename_pred_ply = save_name + '/cloud/' + scene_name + '_' + lines[s].split()[0].split('/')[1][:-4] + '_' + 'iebins' + '.ply'
            filename_cmap_png = save_name + '/cmap/' + scene_name + '_' + lines[s].split()[0].split('/rgb_')[1].replace(
                '.jpg', '.png')
            filename_gt_png = save_name + '/gt/' + scene_name + '_' + lines[s].split()[0].split('/rgb_')[1].replace(
                '.jpg', '_gt.png')
            filename_image_png = save_name + '/rgb/' + scene_name + '_' + lines[s].split()[0].split('/rgb_')[1]
        
        rgb_path = os.path.join(args.data_path, './' + lines[s].split()[0])
        image = cv2.imread(rgb_path)
        if args.dataset == 'nyu':
            gt_path = os.path.join(args.data_path, './' + lines[s].split()[1])
            gt = cv2.imread(gt_path, -1).astype(np.float32) / 1000.0  # Visualization purpose only
            gt[gt == 0] = np.amax(gt)
        
        pred_depth = pred_depths[s]
        
        if args.dataset == 'kitti' or args.dataset == 'kittipred':
            pred_depth_scaled = pred_depth * 256.0
        else:
            pred_depth_scaled = pred_depth * 1000.0
        
        pred_depth_scaled = pred_depth_scaled.astype(np.uint16)
        cv2.imwrite(filename_pred_png, pred_depth_scaled, [cv2.IMWRITE_PNG_COMPRESSION, 0])
        
        if args.save_viz:
            cv2.imwrite(filename_image_png, image[10:-1 - 9, 10:-1 - 9, :])
            if args.dataset == 'nyu':
                plt.imsave(filename_gt_png, (10 - gt) / 10, cmap='jet')
                pred_depth_cropped = pred_depth[10:-1 - 9, 10:-1 - 9]
                plt.imsave(filename_cmap_png, (10 - pred_depth) / 10, cmap='jet')
            else:
                plt.imsave(filename_cmap_png, np.log10(pred_depth), cmap='magma')

        if args.pred_clouds:
            pred_cloud = pred_clouds[s]
            o3d.io.write_point_cloud(filename_pred_ply, pred_cloud)
    
    return


if __name__ == '__main__':
    test(args)