File size: 13,612 Bytes
bd86ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
from torch.utils.data import Dataset, DataLoader
import torch.utils.data.distributed
from torchvision import transforms

import numpy as np
from PIL import Image
import os
import random
import copy

from utils import DistributedSamplerNoEvenlyDivisible


def _is_pil_image(img):
    return isinstance(img, Image.Image)


def _is_numpy_image(img):
    return isinstance(img, np.ndarray) and (img.ndim in {2, 3})


def preprocessing_transforms(mode):
    return transforms.Compose([
        ToTensor(mode=mode)
    ])


class NewDataLoader(object):
    def __init__(self, args, mode):
        if mode == 'train':
            self.training_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
            if args.distributed:
                self.train_sampler = torch.utils.data.distributed.DistributedSampler(self.training_samples)
            else:
                self.train_sampler = None
    
            self.data = DataLoader(self.training_samples, args.batch_size,
                                   shuffle=(self.train_sampler is None),
                                   num_workers=args.num_threads,
                                   pin_memory=True,
                                   sampler=self.train_sampler)

        elif mode == 'online_eval':
            self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
            if args.distributed:
                # self.eval_sampler = torch.utils.data.distributed.DistributedSampler(self.testing_samples, shuffle=False)
                self.eval_sampler = DistributedSamplerNoEvenlyDivisible(self.testing_samples, shuffle=False)
            else:
                self.eval_sampler = None
            self.data = DataLoader(self.testing_samples, 1,
                                   shuffle=False,
                                   num_workers=1,
                                   pin_memory=True,
                                   sampler=self.eval_sampler)
        
        elif mode == 'test':
            self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
            self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1)

        else:
            print('mode should be one of \'train, test, online_eval\'. Got {}'.format(mode))
            
            
class DataLoadPreprocess(Dataset):
    def __init__(self, args, mode, transform=None, is_for_online_eval=False):
        self.args = args
        if mode == 'online_eval':
            with open(args.filenames_file_eval, 'r') as f:
                self.filenames = f.readlines()
        else:
            with open(args.filenames_file, 'r') as f:
                self.filenames = f.readlines()
    
        self.mode = mode
        self.transform = transform
        self.to_tensor = ToTensor
        self.is_for_online_eval = is_for_online_eval
    
    def __getitem__(self, idx):
        sample_path = self.filenames[idx]
        # focal = float(sample_path.split()[2])
        focal = 518.8579

        if self.mode == 'train':
            if self.args.dataset == 'kitti':
                rgb_file = sample_path.split()[0]
                depth_file = os.path.join(sample_path.split()[0].split('/')[0], sample_path.split()[1])
                if self.args.use_right is True and random.random() > 0.5:
                    rgb_file = rgb_file.replace('image_02', 'image_03')
                    depth_file = depth_file.replace('image_02', 'image_03')
            else:
                rgb_file = sample_path.split()[0]
                depth_file = sample_path.split()[1]

            image_path = os.path.join(self.args.data_path, rgb_file)
            depth_path = os.path.join(self.args.gt_path, depth_file)
    
            image = Image.open(image_path)
            depth_gt = Image.open(depth_path)
            
            if self.args.do_kb_crop is True:
                height = image.height
                width = image.width
                top_margin = int(height - 352)
                left_margin = int((width - 1216) / 2)
                depth_gt = depth_gt.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
                image = image.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
            
            # To avoid blank boundaries due to pixel registration
            if self.args.dataset == 'nyu':
                if self.args.input_height == 480:
                    depth_gt = np.array(depth_gt)
                    valid_mask = np.zeros_like(depth_gt)
                    valid_mask[45:472, 43:608] = 1
                    depth_gt[valid_mask==0] = 0
                    depth_gt = Image.fromarray(depth_gt)
                else:
                    depth_gt = depth_gt.crop((43, 45, 608, 472))
                    image = image.crop((43, 45, 608, 472))
    
            if self.args.do_random_rotate is True:
                random_angle = (random.random() - 0.5) * 2 * self.args.degree
                image = self.rotate_image(image, random_angle)
                depth_gt = self.rotate_image(depth_gt, random_angle, flag=Image.NEAREST)
            
            image = np.asarray(image, dtype=np.float32) / 255.0
            depth_gt = np.asarray(depth_gt, dtype=np.float32)
            depth_gt = np.expand_dims(depth_gt, axis=2)

            if self.args.dataset == 'nyu':
                depth_gt = depth_gt / 1000.0
            else:
                depth_gt = depth_gt / 256.0

            if image.shape[0] != self.args.input_height or image.shape[1] != self.args.input_width:
                image, depth_gt = self.random_crop(image, depth_gt, self.args.input_height, self.args.input_width)
            image, depth_gt = self.train_preprocess(image, depth_gt)
            # https://github.com/ShuweiShao/URCDC-Depth
            image, depth_gt = self.Cut_Flip(image, depth_gt)
            sample = {'image': image, 'depth': depth_gt, 'focal': focal}
        
        else:
            if self.mode == 'online_eval':
                data_path = self.args.data_path_eval
            else:
                data_path = self.args.data_path

            image_path = os.path.join(data_path, "./" + sample_path.split()[0])
            image = np.asarray(Image.open(image_path), dtype=np.float32) / 255.0

            if self.mode == 'online_eval':
                gt_path = self.args.gt_path_eval
                depth_path = os.path.join(gt_path, "./" + sample_path.split()[1])
                if self.args.dataset == 'kitti':
                    depth_path = os.path.join(gt_path, sample_path.split()[0].split('/')[0], sample_path.split()[1])
                has_valid_depth = False
                try:
                    depth_gt = Image.open(depth_path)
                    has_valid_depth = True
                except IOError:
                    depth_gt = False
                    # print('Missing gt for {}'.format(image_path))

                if has_valid_depth:
                    depth_gt = np.asarray(depth_gt, dtype=np.float32)
                    depth_gt = np.expand_dims(depth_gt, axis=2)
                    if self.args.dataset == 'nyu':
                        depth_gt = depth_gt / 1000.0
                    else:
                        depth_gt = depth_gt / 256.0

            if self.args.do_kb_crop is True:
                height = image.shape[0]
                width = image.shape[1]
                top_margin = int(height - 352)
                left_margin = int((width - 1216) / 2)
                image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
                if self.mode == 'online_eval' and has_valid_depth:
                    depth_gt = depth_gt[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
            
            if self.mode == 'online_eval':
                sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth}
            else:
                sample = {'image': image, 'focal': focal}
        
        if self.transform:
            sample = self.transform([sample, self.args.dataset])
        
        return sample
    
    def rotate_image(self, image, angle, flag=Image.BILINEAR):
        result = image.rotate(angle, resample=flag)
        return result

    def random_crop(self, img, depth, height, width):
        assert img.shape[0] >= height
        assert img.shape[1] >= width
        assert img.shape[0] == depth.shape[0]
        assert img.shape[1] == depth.shape[1]
        x = random.randint(0, img.shape[1] - width)
        y = random.randint(0, img.shape[0] - height)
        img = img[y:y + height, x:x + width, :]
        depth = depth[y:y + height, x:x + width, :]
        return img, depth

    def train_preprocess(self, image, depth_gt):
        # Random flipping
        do_flip = random.random()
        if do_flip > 0.5:
            image = (image[:, ::-1, :]).copy()
            depth_gt = (depth_gt[:, ::-1, :]).copy()
    
        # Random gamma, brightness, color augmentation
        do_augment = random.random()
        if do_augment > 0.5:
            image = self.augment_image(image)
    
        return image, depth_gt
    
    def augment_image(self, image):
        # gamma augmentation
        gamma = random.uniform(0.9, 1.1)
        image_aug = image ** gamma

        # brightness augmentation
        if self.args.dataset == 'nyu':
            brightness = random.uniform(0.75, 1.25)
        else:
            brightness = random.uniform(0.9, 1.1)
        image_aug = image_aug * brightness

        # color augmentation
        colors = np.random.uniform(0.9, 1.1, size=3)
        white = np.ones((image.shape[0], image.shape[1]))
        color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
        image_aug *= color_image
        image_aug = np.clip(image_aug, 0, 1)

        return image_aug
    
    def Cut_Flip(self, image, depth):

        p = random.random()
        if p < 0.5:
            return image, depth
        image_copy = copy.deepcopy(image)
        depth_copy = copy.deepcopy(depth)
        h, w, c = image.shape

        N = 2     
        h_list = []
        h_interval_list = []   # hight interval
        for i in range(N-1):
            h_list.append(random.randint(int(0.2*h), int(0.8*h)))
        h_list.append(h)
        h_list.append(0)  
        h_list.sort()
        h_list_inv = np.array([h]*(N+1))-np.array(h_list)
        for i in range(len(h_list)-1):
            h_interval_list.append(h_list[i+1]-h_list[i])
        for i in range(N):
            image[h_list[i]:h_list[i+1], :, :] = image_copy[h_list_inv[i]-h_interval_list[i]:h_list_inv[i], :, :]
            depth[h_list[i]:h_list[i+1], :, :] = depth_copy[h_list_inv[i]-h_interval_list[i]:h_list_inv[i], :, :]

        return image, depth

    
    def __len__(self):
        return len(self.filenames)


class ToTensor(object):
    def __init__(self, mode):
        self.mode = mode
        self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    
    def __call__(self, sample_dataset):

        sample = sample_dataset[0]
        dataset = sample_dataset[1]

        image, focal = sample['image'], sample['focal']
        image = self.to_tensor(image)
        image = self.normalize(image)

        if dataset == 'kitti':
            K_p = np.array([[716.88, 0, 596.5593, 0],
                  [0, 716.88, 149.854, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 1]], dtype=np.float32)
            inv_K_p = np.linalg.pinv(K_p)
            inv_K_p = torch.from_numpy(inv_K_p)
            
        elif dataset == 'nyu':
            K_p = np.array([[518.8579, 0, 325.5824, 0],
                  [0, 518.8579, 253.7362, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 1]], dtype=np.float32)
            inv_K_p = np.linalg.pinv(K_p)
            inv_K_p = torch.from_numpy(inv_K_p)

        if self.mode == 'test':
            return {'image': image, 'inv_K_p': inv_K_p, 'focal': focal}

        depth = sample['depth']
        if self.mode == 'train':
            depth = self.to_tensor(depth)
            return {'image': image, 'depth': depth, 'focal': focal}
        else:
            has_valid_depth = sample['has_valid_depth']
            return {'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth}
    
    def to_tensor(self, pic):
        if not (_is_pil_image(pic) or _is_numpy_image(pic)):
            raise TypeError(
                'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
        
        if isinstance(pic, np.ndarray):
            img = torch.from_numpy(pic.transpose((2, 0, 1)))
            return img
        
        # handle PIL Image
        if pic.mode == 'I':
            img = torch.from_numpy(np.array(pic, np.int32, copy=False))
        elif pic.mode == 'I;16':
            img = torch.from_numpy(np.array(pic, np.int16, copy=False))
        else:
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
        # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
        if pic.mode == 'YCbCr':
            nchannel = 3
        elif pic.mode == 'I;16':
            nchannel = 1
        else:
            nchannel = len(pic.mode)
        img = img.view(pic.size[1], pic.size[0], nchannel)
        
        img = img.transpose(0, 1).transpose(0, 2).contiguous()
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img