File size: 13,515 Bytes
bd86ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmcv.cnn import ConvModule
from .newcrf_utils import resize, normal_init


class PPM(nn.ModuleList):
    """Pooling Pyramid Module used in PSPNet.

    Args:
        pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module.
        in_channels (int): Input channels.
        channels (int): Channels after modules, before conv_seg.
        conv_cfg (dict|None): Config of conv layers.
        norm_cfg (dict|None): Config of norm layers.
        act_cfg (dict): Config of activation layers.
        align_corners (bool): align_corners argument of F.interpolate.
    """

    def __init__(self, pool_scales, in_channels, channels, conv_cfg, norm_cfg,
                 act_cfg, align_corners):
        super(PPM, self).__init__()
        self.pool_scales = pool_scales
        self.align_corners = align_corners
        self.in_channels = in_channels
        self.channels = channels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        for pool_scale in pool_scales:
            # == if batch size = 1, BN is not supported, change to GN
            if pool_scale == 1: norm_cfg = dict(type='GN', requires_grad=True, num_groups=256)
            self.append(
                nn.Sequential(
                    nn.AdaptiveAvgPool2d(pool_scale),
                    ConvModule(
                        self.in_channels,
                        self.channels,
                        1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=norm_cfg,
                        act_cfg=self.act_cfg)))

    def forward(self, x):
        """Forward function."""
        ppm_outs = []
        for ppm in self:
            ppm_out = ppm(x)
            upsampled_ppm_out = resize(
                ppm_out,
                size=x.size()[2:],
                mode='bilinear',
                align_corners=self.align_corners)
            ppm_outs.append(upsampled_ppm_out)
        return ppm_outs


class BaseDecodeHead(nn.Module):
    """Base class for BaseDecodeHead.

    Args:
        in_channels (int|Sequence[int]): Input channels.
        channels (int): Channels after modules, before conv_seg.
        num_classes (int): Number of classes.
        dropout_ratio (float): Ratio of dropout layer. Default: 0.1.
        conv_cfg (dict|None): Config of conv layers. Default: None.
        norm_cfg (dict|None): Config of norm layers. Default: None.
        act_cfg (dict): Config of activation layers.
            Default: dict(type='ReLU')
        in_index (int|Sequence[int]): Input feature index. Default: -1
        input_transform (str|None): Transformation type of input features.
            Options: 'resize_concat', 'multiple_select', None.
            'resize_concat': Multiple feature maps will be resize to the
                same size as first one and than concat together.
                Usually used in FCN head of HRNet.
            'multiple_select': Multiple feature maps will be bundle into
                a list and passed into decode head.
            None: Only one select feature map is allowed.
            Default: None.
        loss_decode (dict): Config of decode loss.
            Default: dict(type='CrossEntropyLoss').
        ignore_index (int | None): The label index to be ignored. When using
            masked BCE loss, ignore_index should be set to None. Default: 255
        sampler (dict|None): The config of segmentation map sampler.
            Default: None.
        align_corners (bool): align_corners argument of F.interpolate.
            Default: False.
    """

    def __init__(self,
                 in_channels,
                 channels,
                 *,
                 num_classes,
                 dropout_ratio=0.1,
                 conv_cfg=None,
                 norm_cfg=None,
                 act_cfg=dict(type='ReLU'),
                 in_index=-1,
                 input_transform=None,
                 loss_decode=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 ignore_index=255,
                 sampler=None,
                 align_corners=False):
        super(BaseDecodeHead, self).__init__()
        self._init_inputs(in_channels, in_index, input_transform)
        self.channels = channels
        self.num_classes = num_classes
        self.dropout_ratio = dropout_ratio
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.in_index = in_index
        # self.loss_decode = build_loss(loss_decode)
        self.ignore_index = ignore_index
        self.align_corners = align_corners
        # if sampler is not None:
        #     self.sampler = build_pixel_sampler(sampler, context=self)
        # else:
        #     self.sampler = None

        # self.conv_seg = nn.Conv2d(channels, num_classes, kernel_size=1)
        # self.conv1 = nn.Conv2d(channels, num_classes, 3, padding=1)
        if dropout_ratio > 0:
            self.dropout = nn.Dropout2d(dropout_ratio)
        else:
            self.dropout = None
        self.fp16_enabled = False

    def extra_repr(self):
        """Extra repr."""
        s = f'input_transform={self.input_transform}, ' \
            f'ignore_index={self.ignore_index}, ' \
            f'align_corners={self.align_corners}'
        return s

    def _init_inputs(self, in_channels, in_index, input_transform):
        """Check and initialize input transforms.

        The in_channels, in_index and input_transform must match.
        Specifically, when input_transform is None, only single feature map
        will be selected. So in_channels and in_index must be of type int.
        When input_transform

        Args:
            in_channels (int|Sequence[int]): Input channels.
            in_index (int|Sequence[int]): Input feature index.
            input_transform (str|None): Transformation type of input features.
                Options: 'resize_concat', 'multiple_select', None.
                'resize_concat': Multiple feature maps will be resize to the
                    same size as first one and than concat together.
                    Usually used in FCN head of HRNet.
                'multiple_select': Multiple feature maps will be bundle into
                    a list and passed into decode head.
                None: Only one select feature map is allowed.
        """

        if input_transform is not None:
            assert input_transform in ['resize_concat', 'multiple_select']
        self.input_transform = input_transform
        self.in_index = in_index
        if input_transform is not None:
            assert isinstance(in_channels, (list, tuple))
            assert isinstance(in_index, (list, tuple))
            assert len(in_channels) == len(in_index)
            if input_transform == 'resize_concat':
                self.in_channels = sum(in_channels)
            else:
                self.in_channels = in_channels
        else:
            assert isinstance(in_channels, int)
            assert isinstance(in_index, int)
            self.in_channels = in_channels

    def init_weights(self):
        """Initialize weights of classification layer."""
        # normal_init(self.conv_seg, mean=0, std=0.01)
        # normal_init(self.conv1, mean=0, std=0.01)

    def _transform_inputs(self, inputs):
        """Transform inputs for decoder.

        Args:
            inputs (list[Tensor]): List of multi-level img features.

        Returns:
            Tensor: The transformed inputs
        """

        if self.input_transform == 'resize_concat':
            inputs = [inputs[i] for i in self.in_index]
            upsampled_inputs = [
                resize(
                    input=x,
                    size=inputs[0].shape[2:],
                    mode='bilinear',
                    align_corners=self.align_corners) for x in inputs
            ]
            inputs = torch.cat(upsampled_inputs, dim=1)
        elif self.input_transform == 'multiple_select':
            inputs = [inputs[i] for i in self.in_index]
        else:
            inputs = inputs[self.in_index]

        return inputs

    def forward(self, inputs):
        """Placeholder of forward function."""
        pass

    def forward_train(self, inputs, img_metas, gt_semantic_seg, train_cfg):
        """Forward function for training.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            gt_semantic_seg (Tensor): Semantic segmentation masks
                used if the architecture supports semantic segmentation task.
            train_cfg (dict): The training config.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        seg_logits = self.forward(inputs)
        losses = self.losses(seg_logits, gt_semantic_seg)
        return losses

    def forward_test(self, inputs, img_metas, test_cfg):
        """Forward function for testing.

        Args:
            inputs (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:Collect`.
            test_cfg (dict): The testing config.

        Returns:
            Tensor: Output segmentation map.
        """
        return self.forward(inputs)


class UPerHead(BaseDecodeHead):
    def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
        super(UPerHead, self).__init__(
            input_transform='multiple_select', **kwargs)
        # FPN Module
        self.lateral_convs = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()
        for in_channels in self.in_channels:  # skip the top layer
            l_conv = ConvModule(
                in_channels,
                self.channels,
                1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg,
                inplace=True)
            fpn_conv = ConvModule(
                self.channels,
                self.channels,
                3,
                padding=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg,
                inplace=True)
            self.lateral_convs.append(l_conv)
            self.fpn_convs.append(fpn_conv)

    def forward(self, inputs):
        """Forward function."""

        inputs = self._transform_inputs(inputs)

        # build laterals
        laterals = [
            lateral_conv(inputs[i])
            for i, lateral_conv in enumerate(self.lateral_convs)
        ]

        # laterals.append(self.psp_forward(inputs))

        # build top-down path
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            prev_shape = laterals[i - 1].shape[2:]
            laterals[i - 1] += resize(
                laterals[i],
                size=prev_shape,
                mode='bilinear',
                align_corners=self.align_corners)

        # build outputs
        fpn_outs = [
            self.fpn_convs[i](laterals[i])
            for i in range(used_backbone_levels - 1)
        ]
        # append psp feature
        fpn_outs.append(laterals[-1])

        return fpn_outs[0]



class PSP(BaseDecodeHead):
    """Unified Perceptual Parsing for Scene Understanding.

    This head is the implementation of `UPerNet
    <https://arxiv.org/abs/1807.10221>`_.

    Args:
        pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
            Module applied on the last feature. Default: (1, 2, 3, 6).
    """

    def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs):
        super(PSP, self).__init__(
            input_transform='multiple_select', **kwargs)
        # PSP Module
        self.psp_modules = PPM(
            pool_scales,
            self.in_channels[-1],
            self.channels,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg,
            align_corners=self.align_corners)
        self.bottleneck = ConvModule(
            self.in_channels[-1] + len(pool_scales) * self.channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def psp_forward(self, inputs):
        """Forward function of PSP module."""
        x = inputs[-1]
        psp_outs = [x]
        psp_outs.extend(self.psp_modules(x))
        psp_outs = torch.cat(psp_outs, dim=1)
        output = self.bottleneck(psp_outs)

        return output

    def forward(self, inputs):
        """Forward function."""
        inputs = self._transform_inputs(inputs)
        
        return self.psp_forward(inputs)