File size: 7,972 Bytes
bd86ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import torch.backends.cudnn as cudnn

import os, sys
import argparse
import numpy as np
from tqdm import tqdm

from utils import post_process_depth, flip_lr, compute_errors
from networks.NewCRFDepth import NewCRFDepth


def convert_arg_line_to_args(arg_line):
    for arg in arg_line.split():
        if not arg.strip():
            continue
        yield arg


parser = argparse.ArgumentParser(description='IEBins PyTorch implementation.', fromfile_prefix_chars='@')
parser.convert_arg_line_to_args = convert_arg_line_to_args

parser.add_argument('--model_name',                type=str,   help='model name', default='iebins')
parser.add_argument('--encoder',                   type=str,   help='type of encoder, base07, large07, tiny07', default='large07')
parser.add_argument('--checkpoint_path',           type=str,   help='path to a checkpoint to load', default='')

# Dataset
parser.add_argument('--dataset',                   type=str,   help='dataset to train on, kitti or nyu', default='nyu')
parser.add_argument('--input_height',              type=int,   help='input height', default=480)
parser.add_argument('--input_width',               type=int,   help='input width',  default=640)
parser.add_argument('--max_depth',                 type=float, help='maximum depth in estimation', default=10)

# Preprocessing
parser.add_argument('--do_random_rotate',                      help='if set, will perform random rotation for augmentation', action='store_true')
parser.add_argument('--degree',                    type=float, help='random rotation maximum degree', default=2.5)
parser.add_argument('--do_kb_crop',                            help='if set, crop input images as kitti benchmark images', action='store_true')
parser.add_argument('--use_right',                             help='if set, will randomly use right images when train on KITTI', action='store_true')

# Eval
parser.add_argument('--data_path_eval',            type=str,   help='path to the data for evaluation', required=False)
parser.add_argument('--gt_path_eval',              type=str,   help='path to the groundtruth data for evaluation', required=False)
parser.add_argument('--filenames_file_eval',       type=str,   help='path to the filenames text file for evaluation', required=False)
parser.add_argument('--min_depth_eval',            type=float, help='minimum depth for evaluation', default=1e-3)
parser.add_argument('--max_depth_eval',            type=float, help='maximum depth for evaluation', default=80)
parser.add_argument('--eigen_crop',                            help='if set, crops according to Eigen NIPS14', action='store_true')
parser.add_argument('--garg_crop',                             help='if set, crops according to Garg  ECCV16', action='store_true')


if sys.argv.__len__() == 2:
    arg_filename_with_prefix = '@' + sys.argv[1]
    args = parser.parse_args([arg_filename_with_prefix])
else:
    args = parser.parse_args()

if args.dataset == 'kitti' or args.dataset == 'nyu':
    from dataloaders.dataloader import NewDataLoader


def eval(model, dataloader_eval, post_process=False):
    eval_measures = torch.zeros(10).cuda()

    for _, eval_sample_batched in enumerate(tqdm(dataloader_eval.data)):
        with torch.no_grad():
            image = torch.autograd.Variable(eval_sample_batched['image'].cuda())
            gt_depth = eval_sample_batched['depth']
            has_valid_depth = eval_sample_batched['has_valid_depth']
            if not has_valid_depth:
                # print('Invalid depth. continue.')
                continue

            pred_depths_r_list, _, _ = model(image)
            if post_process:
                image_flipped = flip_lr(image)
                pred_depths_r_list_flipped, _, _ = model(image_flipped)
                pred_depth = post_process_depth(pred_depths_r_list[-1], pred_depths_r_list_flipped[-1])

            pred_depth = pred_depth.cpu().numpy().squeeze()
            gt_depth = gt_depth.cpu().numpy().squeeze()     

        if args.do_kb_crop:
            height, width = gt_depth.shape
            top_margin = int(height - 352)
            left_margin = int((width - 1216) / 2)
            pred_depth_uncropped = np.zeros((height, width), dtype=np.float32)
            pred_depth_uncropped[top_margin:top_margin + 352, left_margin:left_margin + 1216] = pred_depth
            pred_depth = pred_depth_uncropped

        pred_depth[pred_depth < args.min_depth_eval] = args.min_depth_eval
        pred_depth[pred_depth > args.max_depth_eval] = args.max_depth_eval
        pred_depth[np.isinf(pred_depth)] = args.max_depth_eval
        pred_depth[np.isnan(pred_depth)] = args.min_depth_eval

        valid_mask = np.logical_and(gt_depth > args.min_depth_eval, gt_depth < args.max_depth_eval)

        if args.garg_crop or args.eigen_crop:
            gt_height, gt_width = gt_depth.shape
            eval_mask = np.zeros(valid_mask.shape)

            if args.garg_crop:
                eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height), int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1

            elif args.eigen_crop:
                if args.dataset == 'kitti':
                    eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height), int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1
                elif args.dataset == 'nyu':
                    eval_mask[45:471, 41:601] = 1

            valid_mask = np.logical_and(valid_mask, eval_mask)

        measures = compute_errors(gt_depth[valid_mask], pred_depth[valid_mask])

        eval_measures[:9] += torch.tensor(measures).cuda()
        eval_measures[9] += 1

    eval_measures_cpu = eval_measures.cpu()
    cnt = eval_measures_cpu[9].item()
    eval_measures_cpu /= cnt
    print('Computing errors for {} eval samples'.format(int(cnt)), ', post_process: ', post_process)
    print("{:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}".format('silog', 'abs_rel', 'log10', 'rms',
                                                                                    'sq_rel', 'log_rms', 'd1', 'd2',
                                                                                    'd3'))
    for i in range(8):
        print('{:7.4f}, '.format(eval_measures_cpu[i]), end='')
    print('{:7.4f}'.format(eval_measures_cpu[8]))
    return eval_measures_cpu


def main_worker(args):

    # CRF model
    model = NewCRFDepth(version=args.encoder, inv_depth=False, max_depth=args.max_depth, pretrained=None)
    model.train()

    num_params = sum([np.prod(p.size()) for p in model.parameters()])
    print("== Total number of parameters: {}".format(num_params))

    num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad])
    print("== Total number of learning parameters: {}".format(num_params_update))

    model = torch.nn.DataParallel(model)
    model.cuda()

    print("== Model Initialized")

    if args.checkpoint_path != '':
        if os.path.isfile(args.checkpoint_path):
            print("== Loading checkpoint '{}'".format(args.checkpoint_path))
            checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
            model.load_state_dict(checkpoint['model'])
            print("== Loaded checkpoint '{}'".format(args.checkpoint_path))
            del checkpoint
        else:
            print("== No checkpoint found at '{}'".format(args.checkpoint_path))

    cudnn.benchmark = True

    dataloader_eval = NewDataLoader(args, 'online_eval')

    # ===== Evaluation ======
    model.eval()
    with torch.no_grad():
        eval_measures = eval(model, dataloader_eval, post_process=True)


def main():
    torch.cuda.empty_cache()
    args.distributed = False
    ngpus_per_node = torch.cuda.device_count()
    if ngpus_per_node > 1:
        print("This machine has more than 1 gpu. Please set \'CUDA_VISIBLE_DEVICES=0\'")
        return -1
    
    main_worker(args)


if __name__ == '__main__':
    main()