File size: 12,448 Bytes
bd86ed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .swin_transformer import SwinTransformer
from .newcrf_layers import NewCRF
from .uper_crf_head import PSP
from .depth_update import *
########################################################################################################################
class NewCRFDepth(nn.Module):
"""
Depth network based on neural window FC-CRFs architecture.
"""
def __init__(self, version=None, inv_depth=False, pretrained=None,
frozen_stages=-1, min_depth=0.1, max_depth=100.0, **kwargs):
super().__init__()
self.inv_depth = inv_depth
self.with_auxiliary_head = False
self.with_neck = False
norm_cfg = dict(type='BN', requires_grad=True)
window_size = int(version[-2:])
if version[:-2] == 'base':
embed_dim = 128
depths = [2, 2, 18, 2]
num_heads = [4, 8, 16, 32]
in_channels = [128, 256, 512, 1024]
self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=128)
elif version[:-2] == 'large':
embed_dim = 192
depths = [2, 2, 18, 2]
num_heads = [6, 12, 24, 48]
in_channels = [192, 384, 768, 1536]
self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=192)
elif version[:-2] == 'tiny':
embed_dim = 96
depths = [2, 2, 6, 2]
num_heads = [3, 6, 12, 24]
in_channels = [96, 192, 384, 768]
self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=96)
backbone_cfg = dict(
embed_dim=embed_dim,
depths=depths,
num_heads=num_heads,
window_size=window_size,
ape=False,
drop_path_rate=0.3,
patch_norm=True,
use_checkpoint=False,
frozen_stages=frozen_stages
)
embed_dim = 512
decoder_cfg = dict(
in_channels=in_channels,
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=embed_dim,
dropout_ratio=0.0,
num_classes=32,
norm_cfg=norm_cfg,
align_corners=False
)
self.backbone = SwinTransformer(**backbone_cfg)
v_dim = decoder_cfg['num_classes']*4
win = 7
crf_dims = [128, 256, 512, 1024]
v_dims = [64, 128, 256, embed_dim]
self.crf3 = NewCRF(input_dim=in_channels[3], embed_dim=crf_dims[3], window_size=win, v_dim=v_dims[3], num_heads=32)
self.crf2 = NewCRF(input_dim=in_channels[2], embed_dim=crf_dims[2], window_size=win, v_dim=v_dims[2], num_heads=16)
self.crf1 = NewCRF(input_dim=in_channels[1], embed_dim=crf_dims[1], window_size=win, v_dim=v_dims[1], num_heads=8)
self.decoder = PSP(**decoder_cfg)
self.disp_head1 = DispHead(input_dim=crf_dims[0])
self.up_mode = 'bilinear'
if self.up_mode == 'mask':
self.mask_head = nn.Sequential(
nn.Conv2d(v_dims[0], 64, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 16*9, 1, padding=0))
self.min_depth = min_depth
self.max_depth = max_depth
self.depth_num = 16
self.hidden_dim = 128
self.project = Projection(v_dims[0], self.hidden_dim)
self.init_weights(pretrained=pretrained)
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone and heads.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
print(f'== Load encoder backbone from: {pretrained}')
self.backbone.init_weights(pretrained=pretrained)
self.decoder.init_weights()
if self.with_auxiliary_head:
if isinstance(self.auxiliary_head, nn.ModuleList):
for aux_head in self.auxiliary_head:
aux_head.init_weights()
else:
self.auxiliary_head.init_weights()
def upsample_mask(self, disp, mask):
""" Upsample disp [H/4, W/4, 1] -> [H, W, 1] using convex combination """
N, C, H, W = disp.shape
mask = mask.view(N, 1, 9, 4, 4, H, W)
mask = torch.softmax(mask, dim=2)
up_disp = F.unfold(disp, kernel_size=3, padding=1)
up_disp = up_disp.view(N, C, 9, 1, 1, H, W)
up_disp = torch.sum(mask * up_disp, dim=2)
up_disp = up_disp.permute(0, 1, 4, 2, 5, 3)
return up_disp.reshape(N, C, 4*H, 4*W)
def forward(self, imgs, epoch=1, step=100):
feats = self.backbone(imgs)
ppm_out = self.decoder(feats)
e3 = self.crf3(feats[3], ppm_out)
e3 = nn.PixelShuffle(2)(e3)
e2 = self.crf2(feats[2], e3)
e2 = nn.PixelShuffle(2)(e2)
e1 = self.crf1(feats[1], e2)
e1 = nn.PixelShuffle(2)(e1)
# iterative bins
if epoch == 0 and step < 80:
max_tree_depth = 3
else:
max_tree_depth = 6
if self.up_mode == 'mask':
mask = self.mask_head(e1)
b, c, h, w = e1.shape
device = e1.device
depth = torch.zeros([b, 1, h, w]).to(device)
context = feats[0]
gru_hidden = torch.tanh(self.project(e1))
pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list = self.update(depth, context, gru_hidden, max_tree_depth, self.depth_num, self.min_depth, self.max_depth)
if self.up_mode == 'mask':
for i in range(len(pred_depths_r_list)):
pred_depths_r_list[i] = self.upsample_mask(pred_depths_r_list[i], mask)
for i in range(len(pred_depths_c_list)):
pred_depths_c_list[i] = self.upsample_mask(pred_depths_c_list[i], mask.detach())
for i in range(len(uncertainty_maps_list)):
uncertainty_maps_list[i] = self.upsample_mask(uncertainty_maps_list[i], mask.detach())
else:
for i in range(len(pred_depths_r_list)):
pred_depths_r_list[i] = upsample(pred_depths_r_list[i], scale_factor=4)
for i in range(len(pred_depths_c_list)):
pred_depths_c_list[i] = upsample(pred_depths_c_list[i], scale_factor=4)
for i in range(len(uncertainty_maps_list)):
uncertainty_maps_list[i] = upsample(uncertainty_maps_list[i], scale_factor=4)
return pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list
class DispHead(nn.Module):
def __init__(self, input_dim=100):
super(DispHead, self).__init__()
# self.norm1 = nn.BatchNorm2d(input_dim)
self.conv1 = nn.Conv2d(input_dim, 1, 3, padding=1)
# self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x, scale):
# x = self.relu(self.norm1(x))
x = self.sigmoid(self.conv1(x))
if scale > 1:
x = upsample(x, scale_factor=scale)
return x
class BasicUpdateBlockDepth(nn.Module):
def __init__(self, hidden_dim=128, context_dim=192):
super(BasicUpdateBlockDepth, self).__init__()
self.encoder = ProjectionInputDepth(hidden_dim=hidden_dim, out_chs=hidden_dim * 2)
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=self.encoder.out_chs+context_dim)
self.p_head = PHead(hidden_dim, hidden_dim)
def forward(self, depth, context, gru_hidden, seq_len, depth_num, min_depth, max_depth):
pred_depths_r_list = []
pred_depths_c_list = []
uncertainty_maps_list = []
b, _, h, w = depth.shape
depth_range = max_depth - min_depth
interval = depth_range / depth_num
interval = interval * torch.ones_like(depth)
interval = interval.repeat(1, depth_num, 1, 1)
interval = torch.cat([torch.ones_like(depth) * min_depth, interval], 1)
bin_edges = torch.cumsum(interval, 1)
current_depths = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:])
index_iter = 0
for i in range(seq_len):
input_features = self.encoder(current_depths.detach())
input_c = torch.cat([input_features, context], dim=1)
gru_hidden = self.gru(gru_hidden, input_c)
pred_prob = self.p_head(gru_hidden)
depth_r = (pred_prob * current_depths.detach()).sum(1, keepdim=True)
pred_depths_r_list.append(depth_r)
uncertainty_map = torch.sqrt((pred_prob * ((current_depths.detach() - depth_r.repeat(1, depth_num, 1, 1))**2)).sum(1, keepdim=True))
uncertainty_maps_list.append(uncertainty_map)
index_iter = index_iter + 1
pred_label = get_label(torch.squeeze(depth_r, 1), bin_edges, depth_num).unsqueeze(1)
depth_c = torch.gather(current_depths.detach(), 1, pred_label.detach())
pred_depths_c_list.append(depth_c)
label_target_bin_left = pred_label
target_bin_left = torch.gather(bin_edges, 1, label_target_bin_left)
label_target_bin_right = (pred_label.float() + 1).long()
target_bin_right = torch.gather(bin_edges, 1, label_target_bin_right)
bin_edges, current_depths = update_sample(bin_edges, target_bin_left, target_bin_right, depth_r.detach(), pred_label.detach(), depth_num, min_depth, max_depth, uncertainty_map)
return pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list
class PHead(nn.Module):
def __init__(self, input_dim=128, hidden_dim=128):
super(PHead, self).__init__()
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
self.conv2 = nn.Conv2d(hidden_dim, 16, 3, padding=1)
def forward(self, x):
out = torch.softmax(self.conv2(F.relu(self.conv1(x))), 1)
return out
class SepConvGRU(nn.Module):
def __init__(self, hidden_dim=128, input_dim=128+192):
super(SepConvGRU, self).__init__()
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
def forward(self, h, x):
# horizontal
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz1(hx))
r = torch.sigmoid(self.convr1(hx))
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
h = (1-z) * h + z * q
# vertical
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid(self.convz2(hx))
r = torch.sigmoid(self.convr2(hx))
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
h = (1-z) * h + z * q
return h
class ProjectionInputDepth(nn.Module):
def __init__(self, hidden_dim, out_chs):
super().__init__()
self.out_chs = out_chs
self.convd1 = nn.Conv2d(16, hidden_dim, 7, padding=3)
self.convd2 = nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1)
self.convd3 = nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1)
self.convd4 = nn.Conv2d(hidden_dim, out_chs, 3, padding=1)
def forward(self, depth):
d = F.relu(self.convd1(depth))
d = F.relu(self.convd2(d))
d = F.relu(self.convd3(d))
d = F.relu(self.convd4(d))
return d
class Projection(nn.Module):
def __init__(self, in_chs, out_chs):
super().__init__()
self.conv = nn.Conv2d(in_chs, out_chs, 3, padding=1)
def forward(self, x):
out = self.conv(x)
return out
def upsample(x, scale_factor=2, mode="bilinear", align_corners=False):
"""Upsample input tensor by a factor of 2
"""
return F.interpolate(x, scale_factor=scale_factor, mode=mode, align_corners=align_corners)
def upsample1(x, scale_factor=2, mode="bilinear"):
"""Upsample input tensor by a factor of 2
"""
return F.interpolate(x, scale_factor=scale_factor, mode=mode)
|