File size: 12,448 Bytes
bd86ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import torch
import torch.nn as nn
import torch.nn.functional as F

from .swin_transformer import SwinTransformer
from .newcrf_layers import NewCRF
from .uper_crf_head import PSP
from .depth_update  import *
########################################################################################################################


class NewCRFDepth(nn.Module):
    """
    Depth network based on neural window FC-CRFs architecture.
    """
    def __init__(self, version=None, inv_depth=False, pretrained=None, 
                    frozen_stages=-1, min_depth=0.1, max_depth=100.0, **kwargs):
        super().__init__()

        self.inv_depth = inv_depth
        self.with_auxiliary_head = False
        self.with_neck = False

        norm_cfg = dict(type='BN', requires_grad=True)

        window_size = int(version[-2:])

        if version[:-2] == 'base':
            embed_dim = 128
            depths = [2, 2, 18, 2]
            num_heads = [4, 8, 16, 32]
            in_channels = [128, 256, 512, 1024]
            self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=128)
        elif version[:-2] == 'large':
            embed_dim = 192
            depths = [2, 2, 18, 2]
            num_heads = [6, 12, 24, 48]
            in_channels = [192, 384, 768, 1536]
            self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=192)
        elif version[:-2] == 'tiny':
            embed_dim = 96
            depths = [2, 2, 6, 2]
            num_heads = [3, 6, 12, 24]
            in_channels = [96, 192, 384, 768]
            self.update = BasicUpdateBlockDepth(hidden_dim=128, context_dim=96)

        backbone_cfg = dict(
            embed_dim=embed_dim,
            depths=depths,
            num_heads=num_heads,
            window_size=window_size,
            ape=False,
            drop_path_rate=0.3,
            patch_norm=True,
            use_checkpoint=False,
            frozen_stages=frozen_stages
        )

        embed_dim = 512
        decoder_cfg = dict(
            in_channels=in_channels,
            in_index=[0, 1, 2, 3],
            pool_scales=(1, 2, 3, 6),
            channels=embed_dim,
            dropout_ratio=0.0,
            num_classes=32,
            norm_cfg=norm_cfg,
            align_corners=False
        )

        self.backbone = SwinTransformer(**backbone_cfg)
        v_dim = decoder_cfg['num_classes']*4
        win = 7
        crf_dims = [128, 256, 512, 1024]
        v_dims = [64, 128, 256, embed_dim]
        self.crf3 = NewCRF(input_dim=in_channels[3], embed_dim=crf_dims[3], window_size=win, v_dim=v_dims[3], num_heads=32)
        self.crf2 = NewCRF(input_dim=in_channels[2], embed_dim=crf_dims[2], window_size=win, v_dim=v_dims[2], num_heads=16)
        self.crf1 = NewCRF(input_dim=in_channels[1], embed_dim=crf_dims[1], window_size=win, v_dim=v_dims[1], num_heads=8)

        self.decoder = PSP(**decoder_cfg)
        self.disp_head1 = DispHead(input_dim=crf_dims[0])

        self.up_mode = 'bilinear'
        if self.up_mode == 'mask':
            self.mask_head = nn.Sequential(
                nn.Conv2d(v_dims[0], 64, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 16*9, 1, padding=0))

        self.min_depth = min_depth
        self.max_depth = max_depth
        self.depth_num = 16
        self.hidden_dim = 128
        self.project = Projection(v_dims[0], self.hidden_dim)

        self.init_weights(pretrained=pretrained)

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone and heads.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        print(f'== Load encoder backbone from: {pretrained}')
        self.backbone.init_weights(pretrained=pretrained)
        self.decoder.init_weights()
        if self.with_auxiliary_head:
            if isinstance(self.auxiliary_head, nn.ModuleList):
                for aux_head in self.auxiliary_head:
                    aux_head.init_weights()
            else:
                self.auxiliary_head.init_weights()

    def upsample_mask(self, disp, mask):
        """ Upsample disp [H/4, W/4, 1] -> [H, W, 1] using convex combination """
        N, C, H, W = disp.shape
        mask = mask.view(N, 1, 9, 4, 4, H, W)
        mask = torch.softmax(mask, dim=2)

        up_disp = F.unfold(disp, kernel_size=3, padding=1)
        up_disp = up_disp.view(N, C, 9, 1, 1, H, W)

        up_disp = torch.sum(mask * up_disp, dim=2)
        up_disp = up_disp.permute(0, 1, 4, 2, 5, 3)
        return up_disp.reshape(N, C, 4*H, 4*W)

    def forward(self, imgs, epoch=1, step=100):

        feats = self.backbone(imgs)
        ppm_out = self.decoder(feats)

        e3 = self.crf3(feats[3], ppm_out)
        e3 = nn.PixelShuffle(2)(e3)
        e2 = self.crf2(feats[2], e3)
        e2 = nn.PixelShuffle(2)(e2)
        e1 = self.crf1(feats[1], e2)
        e1 = nn.PixelShuffle(2)(e1)
        
        # iterative bins
        if epoch == 0 and step < 80:
            max_tree_depth = 3
        else:
            max_tree_depth = 6
        
        if self.up_mode == 'mask':
            mask = self.mask_head(e1)

        b, c, h, w = e1.shape
        device = e1.device
               
        depth = torch.zeros([b, 1, h, w]).to(device)
        context = feats[0]
        gru_hidden = torch.tanh(self.project(e1))
        pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list = self.update(depth, context, gru_hidden, max_tree_depth, self.depth_num, self.min_depth, self.max_depth)
        
        if self.up_mode == 'mask':
            for i in range(len(pred_depths_r_list)):
                pred_depths_r_list[i] = self.upsample_mask(pred_depths_r_list[i], mask)  
            for i in range(len(pred_depths_c_list)):
                pred_depths_c_list[i] = self.upsample_mask(pred_depths_c_list[i], mask.detach())
            for i in range(len(uncertainty_maps_list)):
                uncertainty_maps_list[i] = self.upsample_mask(uncertainty_maps_list[i], mask.detach())                   
        else:
            for i in range(len(pred_depths_r_list)):
                pred_depths_r_list[i] = upsample(pred_depths_r_list[i], scale_factor=4)
            for i in range(len(pred_depths_c_list)):
                pred_depths_c_list[i] = upsample(pred_depths_c_list[i], scale_factor=4) 
            for i in range(len(uncertainty_maps_list)):
                uncertainty_maps_list[i] = upsample(uncertainty_maps_list[i], scale_factor=4) 

        return pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list

class DispHead(nn.Module):
    def __init__(self, input_dim=100):
        super(DispHead, self).__init__()
        # self.norm1 = nn.BatchNorm2d(input_dim)
        self.conv1 = nn.Conv2d(input_dim, 1, 3, padding=1)
        # self.relu = nn.ReLU(inplace=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, scale):
        # x = self.relu(self.norm1(x))
        x = self.sigmoid(self.conv1(x))
        if scale > 1:
            x = upsample(x, scale_factor=scale)
        return x

class BasicUpdateBlockDepth(nn.Module):
    def __init__(self, hidden_dim=128, context_dim=192):
        super(BasicUpdateBlockDepth, self).__init__()
                
        self.encoder = ProjectionInputDepth(hidden_dim=hidden_dim, out_chs=hidden_dim * 2)
        self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=self.encoder.out_chs+context_dim)
        self.p_head = PHead(hidden_dim, hidden_dim)

    def forward(self, depth, context, gru_hidden, seq_len, depth_num, min_depth, max_depth):
 
        pred_depths_r_list = []
        pred_depths_c_list = []
        uncertainty_maps_list = []
      
        b, _, h, w = depth.shape
        depth_range = max_depth - min_depth
        interval = depth_range / depth_num
        interval = interval * torch.ones_like(depth)
        interval = interval.repeat(1, depth_num, 1, 1)
        interval = torch.cat([torch.ones_like(depth) * min_depth, interval], 1)

        bin_edges = torch.cumsum(interval, 1)
        current_depths = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:])
        index_iter = 0

        for i in range(seq_len):
            input_features = self.encoder(current_depths.detach())
            input_c = torch.cat([input_features, context], dim=1)

            gru_hidden = self.gru(gru_hidden, input_c)
            pred_prob = self.p_head(gru_hidden)

            depth_r = (pred_prob * current_depths.detach()).sum(1, keepdim=True)
            pred_depths_r_list.append(depth_r)

            uncertainty_map = torch.sqrt((pred_prob * ((current_depths.detach() - depth_r.repeat(1, depth_num, 1, 1))**2)).sum(1, keepdim=True))
            uncertainty_maps_list.append(uncertainty_map)
        
            index_iter = index_iter + 1

            pred_label = get_label(torch.squeeze(depth_r, 1), bin_edges, depth_num).unsqueeze(1)
            depth_c = torch.gather(current_depths.detach(), 1, pred_label.detach())
            pred_depths_c_list.append(depth_c)

            label_target_bin_left = pred_label
            target_bin_left = torch.gather(bin_edges, 1, label_target_bin_left)
            label_target_bin_right = (pred_label.float() + 1).long()
            target_bin_right = torch.gather(bin_edges, 1, label_target_bin_right)

            bin_edges, current_depths = update_sample(bin_edges, target_bin_left, target_bin_right, depth_r.detach(), pred_label.detach(), depth_num, min_depth, max_depth, uncertainty_map)

        return pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list

class PHead(nn.Module):
    def __init__(self, input_dim=128, hidden_dim=128):
        super(PHead, self).__init__()
        self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
        self.conv2 = nn.Conv2d(hidden_dim, 16, 3, padding=1)
    
    def forward(self, x):
        out = torch.softmax(self.conv2(F.relu(self.conv1(x))), 1)
        return out

class SepConvGRU(nn.Module):
    def __init__(self, hidden_dim=128, input_dim=128+192):
        super(SepConvGRU, self).__init__()

        self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
        self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
        self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
        self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
        self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
        self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))

    def forward(self, h, x):
        # horizontal
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz1(hx))
        r = torch.sigmoid(self.convr1(hx))
        q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) 
        
        h = (1-z) * h + z * q

        # vertical
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz2(hx))
        r = torch.sigmoid(self.convr2(hx))
        q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))       
        h = (1-z) * h + z * q

        return h

class ProjectionInputDepth(nn.Module):
    def __init__(self, hidden_dim, out_chs):
        super().__init__()
        self.out_chs = out_chs 
        self.convd1 = nn.Conv2d(16, hidden_dim, 7, padding=3)
        self.convd2 = nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1)
        self.convd3 = nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1)
        self.convd4 = nn.Conv2d(hidden_dim, out_chs, 3, padding=1)
        
    def forward(self, depth):
        d = F.relu(self.convd1(depth))
        d = F.relu(self.convd2(d))
        d = F.relu(self.convd3(d))
        d = F.relu(self.convd4(d))
                
        return d

class Projection(nn.Module):
    def __init__(self, in_chs, out_chs):
        super().__init__()
        self.conv = nn.Conv2d(in_chs, out_chs, 3, padding=1)
        
    def forward(self, x):
        out = self.conv(x)
                
        return out

def upsample(x, scale_factor=2, mode="bilinear", align_corners=False):
    """Upsample input tensor by a factor of 2
    """
    return F.interpolate(x, scale_factor=scale_factor, mode=mode, align_corners=align_corners)

def upsample1(x, scale_factor=2, mode="bilinear"):
    """Upsample input tensor by a factor of 2
    """
    return F.interpolate(x, scale_factor=scale_factor, mode=mode)