|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose, Normalize |
|
import tempfile |
|
from gradio_imageslider import ImageSlider |
|
import matplotlib.pyplot as plt |
|
|
|
from iebins.networks.NewCRFDepth import NewCRFDepth |
|
from iebins.util.transfrom import Resize, NormalizeImage, PrepareForNet |
|
from iebins.utils import post_process_depth, flip_lr |
|
|
|
css = """ |
|
#img-display-container { |
|
max-height: 100vh; |
|
} |
|
#img-display-input { |
|
max-height: 80vh; |
|
} |
|
#img-display-output { |
|
max-height: 80vh; |
|
} |
|
""" |
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = NewCRFDepth(version='large07', inv_depth=False, |
|
max_depth=10, pretrained=None).to(DEVICE).eval() |
|
model.train() |
|
num_params = sum([np.prod(p.size()) for p in model.parameters()]) |
|
print("== Total number of parameters: {}".format(num_params)) |
|
num_params_update = sum([np.prod(p.shape) |
|
for p in model.parameters() if p.requires_grad]) |
|
print("== Total number of learning parameters: {}".format(num_params_update)) |
|
|
|
model = torch.nn.DataParallel(model) |
|
checkpoint = torch.load('checkpoints/nyu_L.pth', |
|
map_location=torch.device(DEVICE)) |
|
model.load_state_dict(checkpoint['model']) |
|
print("== Loaded checkpoint '{}'".format('checkpoints/nyu_L.pth')) |
|
|
|
title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation" |
|
description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**. |
|
Please refer to the [paper](https://arxiv.org/abs/2309.14137), [github](https://github.com/ShuweiShao/IEBins), or [poster](https://nips.cc/media/PosterPDFs/NeurIPS%202023/70695.png?t=1701662442.5228624) for more details.""" |
|
|
|
transform = Compose([ |
|
Resize( |
|
width=518, |
|
height=518, |
|
resize_target=False, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=14, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
PrepareForNet(), |
|
]) |
|
|
|
|
|
@spaces.GPU |
|
@torch.no_grad() |
|
def predict_depth(model, image): |
|
return model(image) |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", |
|
type='numpy', elem_id='img-display-input') |
|
depth_image_slider = ImageSlider( |
|
label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) |
|
raw_file = gr.File( |
|
label="16-bit raw depth (can be considered as disparity)") |
|
submit = gr.Button("Submit") |
|
|
|
def on_submit(image): |
|
original_image = image.copy() |
|
|
|
h, w = image.shape[:2] |
|
|
|
|
|
|
|
|
|
|
|
image = np.asarray(image, dtype=np.float32) / 255.0 |
|
image = torch.from_numpy(image.transpose((2, 0, 1))) |
|
image = Normalize(mean=[0.485, 0.456, 0.406], std=[ |
|
0.229, 0.224, 0.225])(image) |
|
|
|
with torch.no_grad(): |
|
image = torch.autograd.Variable(image.unsqueeze(0)) |
|
print("== Processing image") |
|
pred_depths_r_list, _, _ = model(image) |
|
image_flipped = flip_lr(image) |
|
pred_depths_r_list_flipped, _, _ = model(image_flipped) |
|
pred_depth = post_process_depth( |
|
pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) |
|
print("== Finished processing image") |
|
pred_depth = pred_depth.cpu().numpy().squeeze() |
|
output_image = cv2.applyColorMap( |
|
pred_depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] |
|
|
|
|
|
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) |
|
output_image.save(tmp.name) |
|
|
|
return [(original_image, original_image), tmp.name] |
|
|
|
submit.click(on_submit, inputs=[input_image], outputs=[ |
|
depth_image_slider, raw_file]) |
|
|
|
example_files = os.listdir('examples') |
|
example_files.sort() |
|
example_files = [os.path.join('examples', filename) |
|
for filename in example_files] |
|
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[ |
|
depth_image_slider, raw_file], fn=on_submit, cache_examples=False) |
|
|
|
|
|
if __name__ == '__main__': |
|
demo.queue().launch() |
|
|