Refactor image processing code to convert PyTorch tensor to NumPy array and apply color map
e911b6f
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from PIL import Image | |
import spaces | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose, Normalize | |
import tempfile | |
from gradio_imageslider import ImageSlider | |
import matplotlib.pyplot as plt | |
from iebins.networks.NewCRFDepth import NewCRFDepth | |
from iebins.util.transfrom import Resize, NormalizeImage, PrepareForNet | |
from iebins.utils import post_process_depth, flip_lr | |
css = """ | |
#img-display-container { | |
max-height: 100vh; | |
} | |
#img-display-input { | |
max-height: 80vh; | |
} | |
#img-display-output { | |
max-height: 80vh; | |
} | |
""" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = NewCRFDepth(version='large07', inv_depth=False, | |
max_depth=10, pretrained=None).to(DEVICE).eval() | |
model.train() | |
num_params = sum([np.prod(p.size()) for p in model.parameters()]) | |
print("== Total number of parameters: {}".format(num_params)) | |
num_params_update = sum([np.prod(p.shape) | |
for p in model.parameters() if p.requires_grad]) | |
print("== Total number of learning parameters: {}".format(num_params_update)) | |
model = torch.nn.DataParallel(model) | |
checkpoint = torch.load('checkpoints/nyu_L.pth', | |
map_location=torch.device(DEVICE)) | |
model.load_state_dict(checkpoint['model']) | |
print("== Loaded checkpoint '{}'".format('checkpoints/nyu_L.pth')) | |
title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation" | |
description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**. | |
Please refer to the [paper](https://arxiv.org/abs/2309.14137), [github](https://github.com/ShuweiShao/IEBins), or [poster](https://nips.cc/media/PosterPDFs/NeurIPS%202023/70695.png?t=1701662442.5228624) for more details.""" | |
transform = Compose([ | |
Resize( | |
width=518, | |
height=518, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
]) | |
def predict_depth(model, image): | |
return model(image) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", | |
type='numpy', elem_id='img-display-input') | |
depth_image_slider = ImageSlider( | |
label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) | |
raw_file = gr.File( | |
label="16-bit raw depth (can be considered as disparity)") | |
submit = gr.Button("Submit") | |
def on_submit(image): | |
original_image = image.copy() | |
h, w = image.shape[:2] | |
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
# image = transform({'image': image})['image'] | |
# image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
image = np.asarray(image, dtype=np.float32) / 255.0 | |
image = torch.from_numpy(image.transpose((2, 0, 1))) | |
image = Normalize(mean=[0.485, 0.456, 0.406], std=[ | |
0.229, 0.224, 0.225])(image) | |
# image = torch.from_numpy(image).unsqueeze(0) | |
with torch.no_grad(): | |
image = torch.autograd.Variable(image.unsqueeze(0)) | |
print("== Processing image") | |
pred_depths_r_list, _, _ = model(image) | |
image_flipped = flip_lr(image) | |
pred_depths_r_list_flipped, _, _ = model(image_flipped) | |
pred_depth = post_process_depth( | |
pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) | |
print("== Finished processing image") | |
# Convert the PyTorch tensor to a NumPy array and squeeze | |
pred_depth = pred_depth.cpu().numpy().squeeze() | |
# Convert to uint8 if necessary for the colormap | |
pred_output_depth = pred_depth.astype(np.uint8) | |
# Apply color map | |
output_image = cv2.applyColorMap( | |
pred_output_depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] | |
# Continue with your file saving operations | |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
cv2.imwrite(tmp.name, output_image) | |
return [(original_image, output_image), tmp.name] | |
submit.click(on_submit, inputs=[input_image], outputs=[ | |
depth_image_slider, raw_file]) | |
example_files = os.listdir('examples') | |
example_files.sort() | |
example_files = [os.path.join('examples', filename) | |
for filename in example_files] | |
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[ | |
depth_image_slider, raw_file], fn=on_submit, cache_examples=False) | |
if __name__ == '__main__': | |
demo.queue().launch() | |