umuthopeyildirim's picture
here we go
bd86ed9
import torch
import torch.nn as nn
import torch.nn.utils as utils
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import os, sys, time
from telnetlib import IP
import argparse
import numpy as np
from tqdm import tqdm
from tensorboardX import SummaryWriter
from utils import post_process_depth, flip_lr, silog_loss, compute_errors, eval_metrics, entropy_loss, colormap, \
block_print, enable_print, normalize_result, inv_normalize, convert_arg_line_to_args, colormap_magma
from networks.NewCRFDepth import NewCRFDepth
from networks.depth_update import *
from datetime import datetime
from sum_depth import Sum_depth
parser = argparse.ArgumentParser(description='IEBins PyTorch implementation.', fromfile_prefix_chars='@')
parser.convert_arg_line_to_args = convert_arg_line_to_args
parser.add_argument('--mode', type=str, help='train or test', default='train')
parser.add_argument('--model_name', type=str, help='model name', default='iebins')
parser.add_argument('--encoder', type=str, help='type of encoder, base07, large07, tiny07', default='large07')
parser.add_argument('--pretrain', type=str, help='path of pretrained encoder', default=None)
# Dataset
parser.add_argument('--dataset', type=str, help='dataset to train on, kitti or nyu', default='nyu')
parser.add_argument('--data_path', type=str, help='path to the data', required=True)
parser.add_argument('--gt_path', type=str, help='path to the groundtruth data', required=True)
parser.add_argument('--filenames_file', type=str, help='path to the filenames text file', required=True)
parser.add_argument('--input_height', type=int, help='input height', default=480)
parser.add_argument('--input_width', type=int, help='input width', default=640)
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10)
parser.add_argument('--min_depth', type=float, help='minimum depth in estimation', default=0.1)
# Log and save
parser.add_argument('--log_directory', type=str, help='directory to save checkpoints and summaries', default='')
parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', default='')
parser.add_argument('--log_freq', type=int, help='Logging frequency in global steps', default=100)
parser.add_argument('--save_freq', type=int, help='Checkpoint saving frequency in global steps', default=5000)
# Training
parser.add_argument('--weight_decay', type=float, help='weight decay factor for optimization', default=1e-2)
parser.add_argument('--retrain', help='if used with checkpoint_path, will restart training from step zero', action='store_true')
parser.add_argument('--adam_eps', type=float, help='epsilon in Adam optimizer', default=1e-6)
parser.add_argument('--batch_size', type=int, help='batch size', default=4)
parser.add_argument('--num_epochs', type=int, help='number of epochs', default=50)
parser.add_argument('--learning_rate', type=float, help='initial learning rate', default=1e-4)
parser.add_argument('--end_learning_rate', type=float, help='end learning rate', default=-1)
parser.add_argument('--variance_focus', type=float, help='lambda in paper: [0, 1], higher value more focus on minimizing variance of error', default=0.85)
# Preprocessing
parser.add_argument('--do_random_rotate', help='if set, will perform random rotation for augmentation', action='store_true')
parser.add_argument('--degree', type=float, help='random rotation maximum degree', default=2.5)
parser.add_argument('--do_kb_crop', help='if set, crop input images as kitti benchmark images', action='store_true')
parser.add_argument('--use_right', help='if set, will randomly use right images when train on KITTI', action='store_true')
# Multi-gpu training
parser.add_argument('--num_threads', type=int, help='number of threads to use for data loading', default=1)
parser.add_argument('--world_size', type=int, help='number of nodes for distributed training', default=1)
parser.add_argument('--rank', type=int, help='node rank for distributed training', default=0)
parser.add_argument('--dist_url', type=str, help='url used to set up distributed training', default='tcp://127.0.0.1:1234')
parser.add_argument('--dist_backend', type=str, help='distributed backend', default='nccl')
parser.add_argument('--gpu', type=int, help='GPU id to use.', default=None)
parser.add_argument('--multiprocessing_distributed', help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training', action='store_true',)
# Online eval
parser.add_argument('--do_online_eval', help='if set, perform online eval in every eval_freq steps', action='store_true')
parser.add_argument('--data_path_eval', type=str, help='path to the data for online evaluation', required=False)
parser.add_argument('--gt_path_eval', type=str, help='path to the groundtruth data for online evaluation', required=False)
parser.add_argument('--filenames_file_eval', type=str, help='path to the filenames text file for online evaluation', required=False)
parser.add_argument('--min_depth_eval', type=float, help='minimum depth for evaluation', default=1e-3)
parser.add_argument('--max_depth_eval', type=float, help='maximum depth for evaluation', default=80)
parser.add_argument('--eigen_crop', help='if set, crops according to Eigen NIPS14', action='store_true')
parser.add_argument('--garg_crop', help='if set, crops according to Garg ECCV16', action='store_true')
parser.add_argument('--eval_freq', type=int, help='Online evaluation frequency in global steps', default=500)
parser.add_argument('--eval_summary_directory', type=str, help='output directory for eval summary,'
'if empty outputs to checkpoint folder', default='')
if sys.argv.__len__() == 2:
arg_filename_with_prefix = '@' + sys.argv[1]
args = parser.parse_args([arg_filename_with_prefix])
else:
args = parser.parse_args()
if args.dataset == 'kitti' or args.dataset == 'nyu':
from dataloaders.dataloader import NewDataLoader
def online_eval(model, dataloader_eval, gpu, epoch, ngpus, group, post_process=False):
eval_measures = torch.zeros(10).cuda(device=gpu)
for _, eval_sample_batched in enumerate(tqdm(dataloader_eval.data)):
with torch.no_grad():
image = torch.autograd.Variable(eval_sample_batched['image'].cuda(gpu, non_blocking=True))
gt_depth = eval_sample_batched['depth']
has_valid_depth = eval_sample_batched['has_valid_depth']
if not has_valid_depth:
# print('Invalid depth. continue.')
continue
pred_depths_r_list, _, _ = model(image)
if post_process:
image_flipped = flip_lr(image)
pred_depths_r_list_flipped, _, _ = model(image_flipped)
pred_depth = post_process_depth(pred_depths_r_list[-1], pred_depths_r_list_flipped[-1])
pred_depth = pred_depth.cpu().numpy().squeeze()
gt_depth = gt_depth.cpu().numpy().squeeze()
if args.do_kb_crop:
height, width = gt_depth.shape
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
pred_depth_uncropped = np.zeros((height, width), dtype=np.float32)
pred_depth_uncropped[top_margin:top_margin + 352, left_margin:left_margin + 1216] = pred_depth
pred_depth = pred_depth_uncropped
pred_depth[pred_depth < args.min_depth_eval] = args.min_depth_eval
pred_depth[pred_depth > args.max_depth_eval] = args.max_depth_eval
pred_depth[np.isinf(pred_depth)] = args.max_depth_eval
pred_depth[np.isnan(pred_depth)] = args.min_depth_eval
valid_mask = np.logical_and(gt_depth > args.min_depth_eval, gt_depth < args.max_depth_eval)
if args.garg_crop or args.eigen_crop:
gt_height, gt_width = gt_depth.shape
eval_mask = np.zeros(valid_mask.shape)
if args.garg_crop:
eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height), int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1
elif args.eigen_crop:
if args.dataset == 'kitti':
eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height), int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1
elif args.dataset == 'nyu':
eval_mask[45:471, 41:601] = 1
valid_mask = np.logical_and(valid_mask, eval_mask)
measures = compute_errors(gt_depth[valid_mask], pred_depth[valid_mask])
eval_measures[:9] += torch.tensor(measures).cuda(device=gpu)
eval_measures[9] += 1
if args.multiprocessing_distributed:
# group = dist.new_group([i for i in range(ngpus)])
dist.all_reduce(tensor=eval_measures, op=dist.ReduceOp.SUM, group=group)
if not args.multiprocessing_distributed or gpu == 0:
eval_measures_cpu = eval_measures.cpu()
cnt = eval_measures_cpu[9].item()
eval_measures_cpu /= cnt
print('Computing errors for {} eval samples'.format(int(cnt)), ', post_process: ', post_process)
print("{:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}".format('silog', 'abs_rel', 'log10', 'rms',
'sq_rel', 'log_rms', 'd1', 'd2',
'd3'))
for i in range(8):
print('{:7.4f}, '.format(eval_measures_cpu[i]), end='')
print('{:7.4f}'.format(eval_measures_cpu[8]))
return eval_measures_cpu
return None
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print("== Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
# model
model = NewCRFDepth(version=args.encoder, inv_depth=False, max_depth=args.max_depth, pretrained=args.pretrain)
model.train()
num_params = sum([np.prod(p.size()) for p in model.parameters()])
print("== Total number of parameters: {}".format(num_params))
num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad])
print("== Total number of learning parameters: {}".format(num_params_update))
if args.distributed:
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
args.batch_size = int(args.batch_size / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model)
model.cuda()
if args.distributed:
print("== Model Initialized on GPU: {}".format(args.gpu))
else:
print("== Model Initialized")
global_step = 0
best_eval_measures_lower_better = torch.zeros(6).cpu() + 1e3
best_eval_measures_higher_better = torch.zeros(3).cpu()
best_eval_steps = np.zeros(9, dtype=np.int32)
# Training parameters
optimizer = torch.optim.Adam([{'params': model.module.parameters()}],
lr=args.learning_rate)
model_just_loaded = False
if args.checkpoint_path != '':
if os.path.isfile(args.checkpoint_path):
print("== Loading checkpoint '{}'".format(args.checkpoint_path))
if args.gpu is None:
checkpoint = torch.load(args.checkpoint_path)
else:
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.checkpoint_path, map_location=loc)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
if not args.retrain:
try:
global_step = checkpoint['global_step']
best_eval_measures_higher_better = checkpoint['best_eval_measures_higher_better'].cpu()
best_eval_measures_lower_better = checkpoint['best_eval_measures_lower_better'].cpu()
best_eval_steps = checkpoint['best_eval_steps']
except KeyError:
print("Could not load values for online evaluation")
print("== Loaded checkpoint '{}' (global_step {})".format(args.checkpoint_path, checkpoint['global_step']))
else:
print("== No checkpoint found at '{}'".format(args.checkpoint_path))
model_just_loaded = True
del checkpoint
cudnn.benchmark = True
dataloader = NewDataLoader(args, 'train')
dataloader_eval = NewDataLoader(args, 'online_eval')
# ===== Evaluation before training ======
# model.eval()
# with torch.no_grad():
# eval_measures = online_eval(model, dataloader_eval, gpu, ngpus_per_node, post_process=True)
# Logging
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
writer = SummaryWriter(args.log_directory + '/' + args.model_name + '/summaries', flush_secs=30)
if args.do_online_eval:
if args.eval_summary_directory != '':
eval_summary_path = os.path.join(args.eval_summary_directory, args.model_name)
else:
eval_summary_path = os.path.join(args.log_directory, args.model_name, 'eval')
eval_summary_writer = SummaryWriter(eval_summary_path, flush_secs=30)
silog_criterion = silog_loss(variance_focus=args.variance_focus)
sum_localdepth = Sum_depth().cuda(args.gpu)
start_time = time.time()
duration = 0
num_log_images = args.batch_size
end_learning_rate = args.end_learning_rate if args.end_learning_rate != -1 else 0.1 * args.learning_rate
var_sum = [var.sum().item() for var in model.parameters() if var.requires_grad]
var_cnt = len(var_sum)
var_sum = np.sum(var_sum)
print("== Initial variables' sum: {:.3f}, avg: {:.3f}".format(var_sum, var_sum/var_cnt))
steps_per_epoch = len(dataloader.data)
num_total_steps = args.num_epochs * steps_per_epoch
epoch = global_step // steps_per_epoch
group = dist.new_group([i for i in range(ngpus_per_node)])
while epoch < args.num_epochs:
if args.distributed:
dataloader.train_sampler.set_epoch(epoch)
for step, sample_batched in enumerate(dataloader.data):
optimizer.zero_grad()
before_op_time = time.time()
si_loss = 0
image = torch.autograd.Variable(sample_batched['image'].cuda(args.gpu, non_blocking=True))
depth_gt = torch.autograd.Variable(sample_batched['depth'].cuda(args.gpu, non_blocking=True))
pred_depths_r_list, pred_depths_c_list, uncertainty_maps_list = model(image, epoch, step)
if args.dataset == 'nyu':
mask = depth_gt > 0.1
else:
mask = depth_gt > 1.0
max_tree_depth = len(pred_depths_r_list)
for curr_tree_depth in range(max_tree_depth):
si_loss += silog_criterion.forward(pred_depths_r_list[curr_tree_depth], depth_gt, mask.to(torch.bool))
loss = si_loss
loss.backward()
for param_group in optimizer.param_groups:
current_lr = (args.learning_rate - end_learning_rate) * (1 - global_step / num_total_steps) ** 0.9 + end_learning_rate
param_group['lr'] = current_lr
optimizer.step()
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
print('[epoch][s/s_per_e/gs]: [{}][{}/{}/{}], lr: {:.12f}, loss: {:.12f}'.format(epoch, step, steps_per_epoch, global_step, current_lr, loss))
# if np.isnan(loss.cpu().item()):
# print('NaN in loss occurred. Aborting training.')
# return -1
duration += time.time() - before_op_time
if global_step and global_step % args.log_freq == 0 and not model_just_loaded:
var_sum = [var.sum().item() for var in model.parameters() if var.requires_grad]
var_cnt = len(var_sum)
var_sum = np.sum(var_sum)
examples_per_sec = args.batch_size / duration * args.log_freq
duration = 0
time_sofar = (time.time() - start_time) / 3600
training_time_left = (num_total_steps / global_step - 1.0) * time_sofar
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
print("{}".format(args.model_name))
print_string = 'GPU: {} | examples/s: {:4.2f} | loss: {:.5f} | var sum: {:.3f} avg: {:.3f} | time elapsed: {:.2f}h | time left: {:.2f}h'
print(print_string.format(args.gpu, examples_per_sec, loss, var_sum.item(), var_sum.item()/var_cnt, time_sofar, training_time_left))
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
writer.add_scalar('silog_loss', si_loss, global_step)
# writer.add_scalar('var_loss', var_loss, global_step)
writer.add_scalar('learning_rate', current_lr, global_step)
writer.add_scalar('var average', var_sum.item()/var_cnt, global_step)
depth_gt = torch.where(depth_gt < 1e-3, depth_gt * 0 + 1e-3, depth_gt)
for i in range(num_log_images):
if args.dataset == 'nyu':
writer.add_image('depth_gt/image/{}'.format(i), colormap(depth_gt[i, :, :, :].data), global_step)
writer.add_image('image/image/{}'.format(i), inv_normalize(image[i, :, :, :]).data, global_step)
writer.add_image('depth_r_est0/image/{}'.format(i), colormap(pred_depths_r_list[0][i, :, :, :].data), global_step)
writer.add_image('depth_r_est1/image/{}'.format(i), colormap(pred_depths_r_list[1][i, :, :, :].data), global_step)
writer.add_image('depth_r_est2/image/{}'.format(i), colormap(pred_depths_r_list[2][i, :, :, :].data), global_step)
writer.add_image('depth_r_est3/image/{}'.format(i), colormap(pred_depths_r_list[3][i, :, :, :].data), global_step)
writer.add_image('depth_r_est4/image/{}'.format(i), colormap(pred_depths_r_list[4][i, :, :, :].data), global_step)
writer.add_image('depth_r_est5/image/{}'.format(i), colormap(pred_depths_r_list[5][i, :, :, :].data), global_step)
writer.add_image('depth_c_est0/image/{}'.format(i), colormap(pred_depths_c_list[0][i, :, :, :].data), global_step)
writer.add_image('depth_c_est1/image/{}'.format(i), colormap(pred_depths_c_list[1][i, :, :, :].data), global_step)
writer.add_image('depth_c_est2/image/{}'.format(i), colormap(pred_depths_c_list[2][i, :, :, :].data), global_step)
writer.add_image('depth_c_est3/image/{}'.format(i), colormap(pred_depths_c_list[3][i, :, :, :].data), global_step)
writer.add_image('depth_c_est4/image/{}'.format(i), colormap(pred_depths_c_list[4][i, :, :, :].data), global_step)
writer.add_image('depth_c_est5/image/{}'.format(i), colormap(pred_depths_c_list[5][i, :, :, :].data), global_step)
else:
writer.add_image('depth_gt/image/{}'.format(i), colormap_magma(torch.log10(depth_gt[i, :, :, :].data)), global_step)
writer.add_image('image/image/{}'.format(i), inv_normalize(image[i, :, :, :]).data, global_step)
writer.add_image('depth_r_est0/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_r_list[0][i, :, :, :].data)), global_step)
writer.add_image('depth_r_est1/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_r_list[1][i, :, :, :].data)), global_step)
writer.add_image('depth_r_est2/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_r_list[2][i, :, :, :].data)), global_step)
writer.add_image('depth_r_est3/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_r_list[3][i, :, :, :].data)), global_step)
writer.add_image('depth_r_est4/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_r_list[4][i, :, :, :].data)), global_step)
writer.add_image('depth_r_est5/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_r_list[5][i, :, :, :].data)), global_step)
writer.add_image('depth_c_est0/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_c_list[0][i, :, :, :].data)), global_step)
writer.add_image('depth_c_est1/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_c_list[1][i, :, :, :].data)), global_step)
writer.add_image('depth_c_est2/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_c_list[2][i, :, :, :].data)), global_step)
writer.add_image('depth_c_est3/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_c_list[3][i, :, :, :].data)), global_step)
writer.add_image('depth_c_est4/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_c_list[4][i, :, :, :].data)), global_step)
writer.add_image('depth_c_est5/image/{}'.format(i), colormap_magma(torch.log10(pred_depths_c_list[5][i, :, :, :].data)), global_step)
writer.add_image('uncer_est0/image/{}'.format(i), colormap(uncertainty_maps_list[0][i, :, :, :].data), global_step)
writer.add_image('uncer_est1/image/{}'.format(i), colormap(uncertainty_maps_list[1][i, :, :, :].data), global_step)
writer.add_image('uncer_est2/image/{}'.format(i), colormap(uncertainty_maps_list[2][i, :, :, :].data), global_step)
writer.add_image('uncer_est3/image/{}'.format(i), colormap(uncertainty_maps_list[3][i, :, :, :].data), global_step)
writer.add_image('uncer_est4/image/{}'.format(i), colormap(uncertainty_maps_list[4][i, :, :, :].data), global_step)
writer.add_image('uncer_est5/image/{}'.format(i), colormap(uncertainty_maps_list[5][i, :, :, :].data), global_step)
if args.do_online_eval and global_step and global_step % args.eval_freq == 0 and not model_just_loaded:
time.sleep(0.1)
model.eval()
with torch.no_grad():
eval_measures = online_eval(model, dataloader_eval, gpu, epoch, ngpus_per_node, group, post_process=True)
if eval_measures is not None:
exp_name = '%s'%(datetime.now().strftime('%m%d'))
log_txt = os.path.join(args.log_directory + '/' + args.model_name, exp_name+'_logs.txt')
with open(log_txt, 'a') as txtfile:
txtfile.write(">>>>>>>>>>>>>>>>>>>>>>>>>Step:%d>>>>>>>>>>>>>>>>>>>>>>>>>\n"%(int(global_step)))
txtfile.write("{:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}\n".format('silog',
'abs_rel', 'log10', 'rms', 'sq_rel', 'log_rms', 'd1', 'd2','d3'))
txtfile.write("depth estimation\n")
line = ''
for i in range(9):
line +='{:7.4f}, '.format(eval_measures[i])
txtfile.write(line+'\n')
for i in range(9):
eval_summary_writer.add_scalar(eval_metrics[i], eval_measures[i].cpu(), int(global_step))
measure = eval_measures[i]
is_best = False
if i < 6 and measure < best_eval_measures_lower_better[i]:
old_best = best_eval_measures_lower_better[i].item()
best_eval_measures_lower_better[i] = measure.item()
is_best = True
elif i >= 6 and measure > best_eval_measures_higher_better[i-6]:
old_best = best_eval_measures_higher_better[i-6].item()
best_eval_measures_higher_better[i-6] = measure.item()
is_best = True
if is_best:
old_best_step = best_eval_steps[i]
old_best_name = '/model-{}-best_{}_{:.5f}'.format(old_best_step, eval_metrics[i], old_best)
model_path = args.log_directory + '/' + args.model_name + old_best_name
if os.path.exists(model_path):
command = 'rm {}'.format(model_path)
os.system(command)
best_eval_steps[i] = global_step
model_save_name = '/model-{}-best_{}_{:.5f}'.format(global_step, eval_metrics[i], measure)
print('New best for {}. Saving model: {}'.format(eval_metrics[i], model_save_name))
checkpoint = {'global_step': global_step,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_eval_measures_higher_better': best_eval_measures_higher_better,
'best_eval_measures_lower_better': best_eval_measures_lower_better,
'best_eval_steps': best_eval_steps
}
torch.save(checkpoint, args.log_directory + '/' + args.model_name + model_save_name)
eval_summary_writer.flush()
model.train()
block_print()
enable_print()
model_just_loaded = False
global_step += 1
epoch += 1
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
writer.close()
if args.do_online_eval:
eval_summary_writer.close()
def main():
if args.mode != 'train':
print('train.py is only for training.')
return -1
exp_name = '%s'%(datetime.now().strftime('%m%d'))
args.log_directory = os.path.join(args.log_directory,exp_name)
command = 'mkdir ' + os.path.join(args.log_directory, args.model_name)
os.system(command)
args_out_path = os.path.join(args.log_directory, args.model_name)
command = 'cp ' + sys.argv[1] + ' ' + args_out_path
os.system(command)
save_files = True
if save_files:
aux_out_path = os.path.join(args.log_directory, args.model_name)
networks_savepath = os.path.join(aux_out_path, 'networks')
dataloaders_savepath = os.path.join(aux_out_path, 'dataloaders')
command = 'cp iebins/train.py ' + aux_out_path
os.system(command)
command = 'mkdir -p ' + networks_savepath + ' && cp iebins/networks/*.py ' + networks_savepath
os.system(command)
command = 'mkdir -p ' + dataloaders_savepath + ' && cp iebins/dataloaders/*.py ' + dataloaders_savepath
os.system(command)
torch.cuda.empty_cache()
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if ngpus_per_node > 1 and not args.multiprocessing_distributed:
print("This machine has more than 1 gpu. Please specify --multiprocessing_distributed, or set \'CUDA_VISIBLE_DEVICES=0\'")
return -1
if args.do_online_eval:
print("You have specified --do_online_eval.")
print("This will evaluate the model every eval_freq {} steps and save best models for individual eval metrics."
.format(args.eval_freq))
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
main_worker(args.gpu, ngpus_per_node, args)
if __name__ == '__main__':
main()