umuthopeyildirim commited on
Commit
92224a7
1 Parent(s): 7a8232f

Update model initialization and add print statements for parameter counts

Browse files
Files changed (1) hide show
  1. app.py +9 -1
app.py CHANGED
@@ -26,11 +26,19 @@ css = """
26
  """
27
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
28
  model = NewCRFDepth(version='large07', inv_depth=False,
29
- max_depth=10).to(DEVICE).eval()
 
 
 
 
 
 
 
30
  model = torch.nn.DataParallel(model)
31
  checkpoint = torch.load('checkpoints/nyu_L.pth',
32
  map_location=torch.device(DEVICE))
33
  model.load_state_dict(checkpoint['model'])
 
34
 
35
  title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation"
36
  description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**.
 
26
  """
27
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
28
  model = NewCRFDepth(version='large07', inv_depth=False,
29
+ max_depth=10, pretrained=None).to(DEVICE).eval()
30
+ model.train()
31
+ num_params = sum([np.prod(p.size()) for p in model.parameters()])
32
+ print("== Total number of parameters: {}".format(num_params))
33
+ num_params_update = sum([np.prod(p.shape)
34
+ for p in model.parameters() if p.requires_grad])
35
+ print("== Total number of learning parameters: {}".format(num_params_update))
36
+
37
  model = torch.nn.DataParallel(model)
38
  checkpoint = torch.load('checkpoints/nyu_L.pth',
39
  map_location=torch.device(DEVICE))
40
  model.load_state_dict(checkpoint['model'])
41
+ print("== Loaded checkpoint '{}'".format('checkpoints/nyu_L.pth'))
42
 
43
  title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation"
44
  description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**.