# Copyright (c) OpenMMLab. All rights reserved. import warnings import torch.nn as nn import torch.nn.functional as F def resize(input, size=None, scale_factor=None, mode='nearest', align_corners=None, warning=False): if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ((output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): warnings.warn( f'When align_corners={align_corners}, ' 'the output would more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') return F.interpolate(input, size, scale_factor, mode, align_corners) class Upsample(nn.Module): def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None): super(Upsample, self).__init__() self.size = size if isinstance(scale_factor, tuple): self.scale_factor = tuple(float(factor) for factor in scale_factor) else: self.scale_factor = float(scale_factor) if scale_factor else None self.mode = mode self.align_corners = align_corners def forward(self, x): if not self.size: size = [int(t * self.scale_factor) for t in x.shape[-2:]] else: size = self.size return resize(x, size, None, self.mode, self.align_corners)