Spaces:
Running
Running
File size: 14,185 Bytes
bc3753a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import asyncio
import requests
import json
import os
from edge_tts import Communicate, SubMaker
from io import TextIOWrapper
from typing import Any, TextIO, Union
import sys
sys.path.append('../Linly-Talker')
sys.path.append('../Linly-Talker-main')
from src import cost_time
from src.cost_time import calculate_time
os.environ["GRADIO_TEMP_DIR"]= './temp'
"""
Constants for the Edge TTS project.
"""
TRUSTED_CLIENT_TOKEN = "6A5AA1D4EAFF4E9FB37E23D68491D6F4"
WSS_URL = (
"wss://speech.platform.bing.com/consumer/speech/synthesize/"
+ "readaloud/edge/v1?TrustedClientToken="
+ TRUSTED_CLIENT_TOKEN
)
VOICE_LIST = (
"https://speech.platform.bing.com/consumer/speech/synthesize/"
+ "readaloud/voices/list?trustedclienttoken="
+ TRUSTED_CLIENT_TOKEN
)
def list_voices_fn(proxy=None):
"""
List all available voices and their attributes.
This pulls data from the URL used by Microsoft Edge to return a list of
all available voices.
Returns:
dict: A dictionary of voice attributes.
"""
# ssl_ctx = ssl.create_default_context(cafile=certifi.where())
headers = {
"Authority": "speech.platform.bing.com",
"Sec-CH-UA": '" Not;A Brand";v="99", "Microsoft Edge";v="91", "Chromium";v="91"',
"Sec-CH-UA-Mobile": "?0",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36 Edg/91.0.864.41",
"Accept": "*/*",
"Sec-Fetch-Site": "none",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Dest": "empty",
"Accept-Encoding": "gzip, deflate, br",
"Accept-Language": "en-US,en;q=0.9",
}
response = requests.get(VOICE_LIST, headers=headers)
data = json.loads(response.text)
return data
class EdgeTTS:
def __init__(self, list_voices = False, proxy = None) -> None:
try:
voices = list_voices_fn(proxy=proxy)
self.SUPPORTED_VOICE = [item['ShortName'] for item in voices]
self.SUPPORTED_VOICE.sort(reverse=True)
# print(self.SUPPORTED_VOICE)
if list_voices:
print(", ".join(self.SUPPORTED_VOICE))
except:
self.SUPPORTED_VOICE = ['zu-ZA-ThembaNeural', 'zu-ZA-ThandoNeural', 'zh-TW-YunJheNeural', 'zh-TW-HsiaoYuNeural', 'zh-TW-HsiaoChenNeural', 'zh-HK-WanLungNeural',
'zh-HK-HiuMaanNeural', 'zh-HK-HiuGaaiNeural', 'zh-CN-shaanxi-XiaoniNeural', 'zh-CN-liaoning-XiaobeiNeural',
'zh-CN-YunyangNeural', 'zh-CN-YunxiaNeural', 'zh-CN-YunxiNeural', 'zh-CN-YunjianNeural',
'zh-CN-XiaoyiNeural', 'zh-CN-XiaoxiaoNeural', 'vi-VN-NamMinhNeural', 'vi-VN-HoaiMyNeural',
'uz-UZ-SardorNeural', 'uz-UZ-MadinaNeural', 'ur-PK-UzmaNeural', 'ur-PK-AsadNeural',
'ur-IN-SalmanNeural', 'ur-IN-GulNeural', 'uk-UA-PolinaNeural', 'uk-UA-OstapNeural',
'tr-TR-EmelNeural', 'tr-TR-AhmetNeural', 'th-TH-PremwadeeNeural', 'th-TH-NiwatNeural',
'te-IN-ShrutiNeural', 'te-IN-MohanNeural', 'ta-SG-VenbaNeural', 'ta-SG-AnbuNeural',
'ta-MY-SuryaNeural', 'ta-MY-KaniNeural', 'ta-LK-SaranyaNeural', 'ta-LK-KumarNeural',
'ta-IN-ValluvarNeural', 'ta-IN-PallaviNeural', 'sw-TZ-RehemaNeural', 'sw-TZ-DaudiNeural',
'sw-KE-ZuriNeural', 'sw-KE-RafikiNeural', 'sv-SE-SofieNeural', 'sv-SE-MattiasNeural',
'su-ID-TutiNeural', 'su-ID-JajangNeural', 'sr-RS-SophieNeural', 'sr-RS-NicholasNeural', 'sq-AL-IlirNeural', 'sq-AL-AnilaNeural',
'so-SO-UbaxNeural', 'so-SO-MuuseNeural', 'sl-SI-RokNeural', 'sl-SI-PetraNeural',
'sk-SK-ViktoriaNeural', 'sk-SK-LukasNeural', 'si-LK-ThiliniNeural', 'si-LK-SameeraNeural',
'ru-RU-SvetlanaNeural', 'ru-RU-DmitryNeural', 'ro-RO-EmilNeural', 'ro-RO-AlinaNeural', 'pt-PT-RaquelNeural', 'pt-PT-DuarteNeural', 'pt-BR-ThalitaNeural', 'pt-BR-FranciscaNeural',
'pt-BR-AntonioNeural', 'ps-AF-LatifaNeural', 'ps-AF-GulNawazNeural', 'pl-PL-ZofiaNeural',
'pl-PL-MarekNeural', 'nl-NL-MaartenNeural', 'nl-NL-FennaNeural', 'nl-NL-ColetteNeural',
'nl-BE-DenaNeural', 'nl-BE-ArnaudNeural', 'ne-NP-SagarNeural', 'ne-NP-HemkalaNeural',
'nb-NO-PernilleNeural', 'nb-NO-FinnNeural', 'my-MM-ThihaNeural', 'my-MM-NilarNeural',
'mt-MT-JosephNeural', 'mt-MT-GraceNeural', 'ms-MY-YasminNeural', 'ms-MY-OsmanNeural',
'mr-IN-ManoharNeural', 'mr-IN-AarohiNeural', 'mn-MN-YesuiNeural', 'mn-MN-BataaNeural',
'ml-IN-SobhanaNeural', 'ml-IN-MidhunNeural', 'mk-MK-MarijaNeural', 'mk-MK-AleksandarNeural',
'lv-LV-NilsNeural', 'lv-LV-EveritaNeural', 'lt-LT-OnaNeural', 'lt-LT-LeonasNeural', 'lo-LA-KeomanyNeural', 'lo-LA-ChanthavongNeural',
'ko-KR-SunHiNeural', 'ko-KR-InJoonNeural', 'ko-KR-HyunsuNeural', 'kn-IN-SapnaNeural',
'kn-IN-GaganNeural', 'km-KH-SreymomNeural', 'km-KH-PisethNeural', 'kk-KZ-DauletNeural',
'kk-KZ-AigulNeural', 'ka-GE-GiorgiNeural', 'ka-GE-EkaNeural', 'jv-ID-SitiNeural', 'jv-ID-DimasNeural',
'ja-JP-NanamiNeural', 'ja-JP-KeitaNeural', 'it-IT-IsabellaNeural', 'it-IT-GiuseppeNeural', 'it-IT-ElsaNeural',
'it-IT-DiegoNeural', 'is-IS-GunnarNeural', 'is-IS-GudrunNeural', 'id-ID-GadisNeural', 'id-ID-ArdiNeural',
'hu-HU-TamasNeural', 'hu-HU-NoemiNeural', 'hr-HR-SreckoNeural', 'hr-HR-GabrijelaNeural', 'hi-IN-SwaraNeural',
'hi-IN-MadhurNeural', 'he-IL-HilaNeural', 'he-IL-AvriNeural', 'gu-IN-NiranjanNeural', 'gu-IN-DhwaniNeural',
'gl-ES-SabelaNeural', 'gl-ES-RoiNeural', 'ga-IE-OrlaNeural', 'ga-IE-ColmNeural', 'fr-FR-VivienneMultilingualNeural',
'fr-FR-RemyMultilingualNeural', 'fr-FR-HenriNeural', 'fr-FR-EloiseNeural', 'fr-FR-DeniseNeural', 'fr-CH-FabriceNeural',
'fr-CH-ArianeNeural', 'fr-CA-ThierryNeural', 'fr-CA-SylvieNeural', 'fr-CA-JeanNeural', 'fr-CA-AntoineNeural',
'fr-BE-GerardNeural', 'fr-BE-CharlineNeural', 'fil-PH-BlessicaNeural', 'fil-PH-AngeloNeural', 'fi-FI-NooraNeural',
'fi-FI-HarriNeural', 'fa-IR-FaridNeural', 'fa-IR-DilaraNeural', 'et-EE-KertNeural', 'et-EE-AnuNeural',
'es-VE-SebastianNeural', 'es-VE-PaolaNeural', 'es-UY-ValentinaNeural', 'es-UY-MateoNeural', 'es-US-PalomaNeural',
'es-US-AlonsoNeural', 'es-SV-RodrigoNeural', 'es-SV-LorenaNeural', 'es-PY-TaniaNeural', 'es-PY-MarioNeural',
'es-PR-VictorNeural', 'es-PR-KarinaNeural', 'es-PE-CamilaNeural', 'es-PE-AlexNeural', 'es-PA-RobertoNeural',
'es-PA-MargaritaNeural', 'es-NI-YolandaNeural', 'es-NI-FedericoNeural', 'es-MX-JorgeNeural', 'es-MX-DaliaNeural',
'es-HN-KarlaNeural', 'es-HN-CarlosNeural', 'es-GT-MartaNeural', 'es-GT-AndresNeural', 'es-GQ-TeresaNeural',
'es-GQ-JavierNeural', 'es-ES-XimenaNeural', 'es-ES-ElviraNeural', 'es-ES-AlvaroNeural', 'es-EC-LuisNeural',
'es-EC-AndreaNeural', 'es-DO-RamonaNeural', 'es-DO-EmilioNeural', 'es-CU-ManuelNeural', 'es-CU-BelkysNeural',
'es-CR-MariaNeural', 'es-CR-JuanNeural', 'es-CO-SalomeNeural', 'es-CO-GonzaloNeural', 'es-CL-LorenzoNeural',
'es-CL-CatalinaNeural', 'es-BO-SofiaNeural', 'es-BO-MarceloNeural', 'es-AR-TomasNeural', 'es-AR-ElenaNeural',
'en-ZA-LukeNeural', 'en-ZA-LeahNeural', 'en-US-SteffanNeural', 'en-US-RogerNeural', 'en-US-MichelleNeural',
'en-US-JennyNeural', 'en-US-GuyNeural', 'en-US-EricNeural', 'en-US-EmmaNeural', 'en-US-ChristopherNeural',
'en-US-BrianNeural', 'en-US-AvaNeural', 'en-US-AriaNeural', 'en-US-AndrewNeural', 'en-US-AnaNeural',
'en-TZ-ImaniNeural', 'en-TZ-ElimuNeural', 'en-SG-WayneNeural', 'en-SG-LunaNeural', 'en-PH-RosaNeural',
'en-PH-JamesNeural', 'en-NZ-MollyNeural', 'en-NZ-MitchellNeural', 'en-NG-EzinneNeural',
'en-NG-AbeoNeural', 'en-KE-ChilembaNeural', 'en-KE-AsiliaNeural', 'en-IN-PrabhatNeural',
'en-IN-NeerjaNeural', 'en-IN-NeerjaExpressiveNeural', 'en-IE-EmilyNeural', 'en-IE-ConnorNeural',
'en-HK-YanNeural', 'en-HK-SamNeural', 'en-GB-ThomasNeural', 'en-GB-SoniaNeural', 'en-GB-RyanNeural',
'en-GB-MaisieNeural', 'en-GB-LibbyNeural', 'en-CA-LiamNeural', 'en-CA-ClaraNeural', 'en-AU-WilliamNeural',
'en-AU-NatashaNeural', 'el-GR-NestorasNeural', 'el-GR-AthinaNeural', 'de-DE-SeraphinaMultilingualNeural',
'de-DE-KillianNeural', 'de-DE-KatjaNeural', 'de-DE-FlorianMultilingualNeural', 'de-DE-ConradNeural',
'de-DE-AmalaNeural', 'de-CH-LeniNeural', 'de-CH-JanNeural', 'de-AT-JonasNeural', 'de-AT-IngridNeural',
'da-DK-JeppeNeural', 'da-DK-ChristelNeural', 'cy-GB-NiaNeural', 'cy-GB-AledNeural', 'cs-CZ-VlastaNeural',
'cs-CZ-AntoninNeural', 'ca-ES-JoanaNeural', 'ca-ES-EnricNeural', 'bs-BA-VesnaNeural', 'bs-BA-GoranNeural',
'bn-IN-TanishaaNeural', 'bn-IN-BashkarNeural', 'bn-BD-PradeepNeural', 'bn-BD-NabanitaNeural', 'bg-BG-KalinaNeural',
'bg-BG-BorislavNeural', 'az-AZ-BanuNeural', 'az-AZ-BabekNeural', 'ar-YE-SalehNeural', 'ar-YE-MaryamNeural',
'ar-TN-ReemNeural', 'ar-TN-HediNeural', 'ar-SY-LaithNeural', 'ar-SY-AmanyNeural', 'ar-SA-ZariyahNeural',
'ar-SA-HamedNeural', 'ar-QA-MoazNeural', 'ar-QA-AmalNeural', 'ar-OM-AyshaNeural', 'ar-OM-AbdullahNeural',
'ar-MA-MounaNeural', 'ar-MA-JamalNeural', 'ar-LY-OmarNeural', 'ar-LY-ImanNeural', 'ar-LB-RamiNeural', 'ar-LB-LaylaNeural',
'ar-KW-NouraNeural', 'ar-KW-FahedNeural', 'ar-JO-TaimNeural', 'ar-JO-SanaNeural', 'ar-IQ-RanaNeural', 'ar-IQ-BasselNeural',
'ar-EG-ShakirNeural', 'ar-EG-SalmaNeural', 'ar-DZ-IsmaelNeural', 'ar-DZ-AminaNeural', 'ar-BH-LailaNeural', 'ar-BH-AliNeural',
'ar-AE-HamdanNeural', 'ar-AE-FatimaNeural', 'am-ET-MekdesNeural', 'am-ET-AmehaNeural', 'af-ZA-WillemNeural', 'af-ZA-AdriNeural']
def preprocess(self, rate, volume, pitch):
if rate >= 0:
rate = f'+{rate}%'
else:
rate = f'{rate}%'
if pitch >= 0:
pitch = f'+{pitch}Hz'
else:
pitch = f'{pitch}Hz'
volume = 100 - volume
volume = f'-{volume}%'
return rate, volume, pitch
@calculate_time
def predict(self,TEXT, VOICE, RATE, VOLUME, PITCH, OUTPUT_FILE='result.wav', OUTPUT_SUBS='result.vtt', words_in_cue = 8):
async def amain() -> None:
"""Main function"""
rate, volume, pitch = self.preprocess(rate = RATE, volume = VOLUME, pitch = PITCH)
communicate = Communicate(TEXT, VOICE, rate = rate, volume = volume, pitch = pitch)
subs: SubMaker = SubMaker()
sub_file: Union[TextIOWrapper, TextIO] = (
open(OUTPUT_SUBS, "w", encoding="utf-8")
)
async for chunk in communicate.stream():
if chunk["type"] == "audio":
# audio_file.write(chunk["data"])
pass
elif chunk["type"] == "WordBoundary":
# print((chunk["offset"], chunk["duration"]), chunk["text"])
subs.create_sub((chunk["offset"], chunk["duration"]), chunk["text"])
sub_file.write(subs.generate_subs(words_in_cue))
await communicate.save(OUTPUT_FILE)
# loop = asyncio.get_event_loop_policy().get_event_loop()
# try:
# loop.run_until_complete(amain())
# finally:
# loop.close()
asyncio.run(amain())
with open(OUTPUT_SUBS, 'r', encoding='utf-8') as file:
vtt_lines = file.readlines()
# 去掉每一行文字中的空格
vtt_lines_without_spaces = [line.replace(" ", "") if "-->" not in line else line for line in vtt_lines]
# print(vtt_lines_without_spaces)
with open(OUTPUT_SUBS, 'w', encoding='utf-8') as output_file:
output_file.writelines(vtt_lines_without_spaces)
return OUTPUT_FILE, OUTPUT_SUBS
def test():
tts = EdgeTTS(list_voices=True)
TEXT = '''近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?'''
VOICE = "zh-CN-XiaoxiaoNeural"
OUTPUT_FILE, OUTPUT_SUBS = "tts.wav", "tts.vtt"
audio_file, sub_file = tts.predict(TEXT, VOICE, 0, 0, 0, OUTPUT_FILE, OUTPUT_SUBS)
print("Audio file written to", audio_file, "and subtitle file written to", sub_file)
if __name__ == "__main__":
test() |