Spaces:
Running
Running
File size: 31,462 Bytes
bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 bc3753a 6ae1dc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
import os
import random
import gradio as gr
import time
from zhconv import convert
from LLM import LLM
from ASR import WhisperASR
from TFG import SadTalker
from TTS import EdgeTTS
from src.cost_time import calculate_time
from configs import *
os.environ["GRADIO_TEMP_DIR"]= './temp'
def get_title(title = 'Linly 智能对话系统 (Linly-Talker)'):
description = f"""
<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px;">{title}</span>
<br>
<span style="font-size: 18px;" id="paper-info">
[<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>]
[<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>]
[<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>]
[<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>]
</span>
<br>
<span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span>
</p>
"""
return description
# 默认text的Example
examples = [
['应对压力最有效的方法是什么?', '女性角色', 'SadTalker', 'zh-CN-XiaoxiaoNeural'],
['如何进行时间管理?','男性角色', 'SadTalker', 'zh-CN-YunyangNeural'],
['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?','女性角色', 'SadTalker', 'zh-HK-HiuMaanNeural'],
['近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?', '男性角色', 'SadTalker', 'zh-TW-YunJheNeural'],
['撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。', '男性角色', 'Wav2Lip', 'zh-CN-YunyangNeural'],
['翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.', '女性角色', 'SadTalker', 'zh-CN-XiaoxiaoNeural'],
]
# 设置默认system
default_system = '你是一个很有帮助的助手'
# 设定默认参数值,可修改
blink_every = True
size_of_image = 256
preprocess_type = 'crop'
facerender = 'facevid2vid'
enhancer = False
is_still_mode = False
exp_weight = 1
use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5
@calculate_time
def Asr(audio):
try:
question = asr.transcribe(audio)
question = convert(question, 'zh-cn')
except Exception as e:
print("ASR Error: ", e)
question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可'
gr.Warning(question)
return question
@calculate_time
def LLM_response(question_audio, question, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0):
answer = llm.generate(question)
print(answer)
if voice in tts.SUPPORTED_VOICE:
try:
tts.predict(answer, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
except:
os.system(f'edge-tts --text "{answer}" --voice {voice} --write-media answer.wav')
return 'answer.wav', 'answer.vtt', answer
elif voice == "克隆烟嗓音":
try:
gpt_path = "../GPT-SoVITS/GPT_weights/yansang-e15.ckpt"
sovits_path = "../GPT-SoVITS/SoVITS_weights/yansang_e16_s144.pth"
vits.load_model(gpt_path, sovits_path)
vits.predict(ref_wav_path = "examples/slicer_opt/vocal_output.wav_10.wav_0000846400_0000957760.wav",
prompt_text = "你为什么要一次一次的伤我的心啊?",
prompt_language = "中文",
text = answer,
text_language = "中英混合",
how_to_cut = "按标点符号切",
save_path = 'answer.wav')
return 'answer.wav', None, answer
except Exception as e:
gr.Error("无克隆环境或者无克隆模型权重,无法克隆声音", e)
return None, None, None
elif voice == "克隆声音":
try:
if question_audio is None:
gr.Error("无声音输入,无法克隆声音")
# print("无声音输入,无法克隆声音")
return None, None, None
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
vits.load_model(gpt_path, sovits_path)
vits.predict(ref_wav_path = question_audio,
prompt_text = question,
prompt_language = "中文",
text = answer,
text_language = "中英混合",
how_to_cut = "凑四句一切",
save_path = 'answer.wav')
return 'answer.wav', None, answer
except Exception as e:
gr.Error("无克隆环境或者无克隆模型权重,无法克隆声音", e)
return None, None, None
@calculate_time
def Talker_response(question_audio = None, method = 'SadTalker', text = '', voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0, batch_size = 2, character = '女性角色'):
if character == '女性角色':
# 女性角色
source_image, pic_path = r'inputs/girl.png', r'inputs/girl.png'
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png"
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat"
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663])
default_voice = 'zh-CN-XiaoxiaoNeural'
elif character == '男性角色':
# 男性角色
source_image = r'./inputs/boy.png'
pic_path = "./inputs/boy.png"
crop_pic_path = "./inputs/first_frame_dir_boy/boy.png"
first_coeff_path = "./inputs/first_frame_dir_boy/boy.mat"
crop_info = ((876, 747), (0, 0, 886, 838), [10.382158280494476, 0, 886, 747.7078990925525])
default_voice = 'zh-CN-YunyangNeural'
else:
gr.Error('未知角色')
return None
voice = default_voice if voice not in tts.SUPPORTED_VOICE+["克隆烟嗓音", "克隆声音"] else voice
print(voice, character)
driven_audio, driven_vtt, _ = LLM_response(question_audio, text, voice, rate, volume, pitch)
pose_style = random.randint(0, 45)
if method == 'SadTalker':
video = talker.test(pic_path,
crop_pic_path,
first_coeff_path,
crop_info,
source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=20)
elif method == 'Wav2Lip':
video = wav2lip.predict(crop_pic_path, driven_audio, batch_size)
else:
return None
if driven_vtt:
return video, driven_vtt
else:
return video
def chat_response(system, message, history):
# response = llm.generate(message)
response, history = llm.chat(system, message, history)
print(history)
# 流式输出
for i in range(len(response)):
time.sleep(0.01)
yield "", history[:-1] + [(message, response[:i+1])]
return "", history
def human_respone(history, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0, batch_size = 2, character = '女性角色'):
response = history[-1][1]
driven_audio, video_vtt = 'answer.wav', 'answer.vtt'
if character == '女性角色':
# 女性角色
source_image, pic_path = r'./inputs/girl.png', r"./inputs/girl.png"
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png"
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat"
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663])
default_voice = 'zh-CN-XiaoxiaoNeural'
elif character == '男性角色':
# 男性角色
source_image = r'./inputs/boy.png'
pic_path = "./inputs/boy.png"
crop_pic_path = "./inputs/first_frame_dir_boy/boy.png"
first_coeff_path = "./inputs/first_frame_dir_boy/boy.mat"
crop_info = ((876, 747), (0, 0, 886, 838), [10.382158280494476, 0, 886, 747.7078990925525])
default_voice = 'zh-CN-YunyangNeural'
voice = default_voice if voice not in tts.SUPPORTED_VOICE else voice
tts.predict(response, voice, rate, volume, pitch, driven_audio, video_vtt)
pose_style = random.randint(0, 45) # 随机选择
video_path = talker.test(pic_path,
crop_pic_path,
first_coeff_path,
crop_info,
source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=20)
return video_path, video_vtt
def modify_system_session(system: str) -> str:
if system is None or len(system) == 0:
system = default_system
llm.clear_history()
return system, system, []
def clear_session():
# clear history
llm.clear_history()
return '', []
def voice_setting(suport_voice):
with gr.Accordion("Advanced Settings(高级设置语音参数) ", open=False):
voice = gr.Dropdown(suport_voice,
label="声音选择 Voice",
value = "克隆声音" if '克隆声音' in suport_voice else None)
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='声音速率 Rate')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='声音音量 Volume')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='声音音调 Pitch')
batch_size = gr.Slider(minimum=1,
maximum=10,
value=2,
step=1,
label='模型参数 调节可以加快生成速度 Talker Batch size')
character = gr.Radio(['女性角色', '男性角色'], label="角色选择", value='女性角色')
method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'ER-NeRF(Comming Soon!!!)'], value = 'SadTalker', label = '模型选择')
return voice, rate, volume, pitch, batch_size, character, method
@calculate_time
def Talker_response_img(question_audio, method, text, voice, rate, volume, pitch, source_image,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps):
driven_audio, driven_vtt, _ = LLM_response(question_audio, text, voice, rate, volume, pitch)
if method == 'SadTalker':
video = talker.test2(source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=fps)
elif method == 'Wav2Lip':
video = wav2lip.predict(source_image, driven_audio, batch_size)
else:
return None
if driven_vtt:
return video, driven_vtt
else:
return video
def app():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 文本/语音对话"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="question_audio"):
with gr.TabItem('对话'):
with gr.Column(variant='panel'):
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="Input Text", lines=3)
voice, rate, volume, pitch, batch_size, character, method = voice_setting(tts.SUPPORTED_VOICE)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('数字人问答'):
gen_video = gr.Video(label="生成视频", format="mp4", scale=1, autoplay=False)
video_button = gr.Button("提交视频生成", variant='primary')
video_button.click(fn=Talker_response,inputs=[question_audio, method, input_text,voice, rate, volume, pitch, batch_size, character],outputs=[gen_video])
with gr.Row():
with gr.Column(variant='panel'):
gr.Markdown("## Test Examples")
gr.Examples(
examples = examples,
fn = Talker_response,
inputs = [input_text, character, method, voice],
)
return inference
def app_multi():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 多轮GPT对话"))
with gr.Row():
with gr.Column():
voice, rate, volume, pitch, batch_size, character, method = voice_setting(tts.SUPPORTED_VOICE)
video = gr.Video(label = '数字人问答', scale = 0.5)
video_button = gr.Button("🎬 生成数字人视频(对话后)", variant = 'primary')
with gr.Column():
with gr.Row():
with gr.Column(scale=3):
system_input = gr.Textbox(value=default_system, lines=1, label='System (设定角色)')
with gr.Column(scale=1):
modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2)
system_state = gr.Textbox(value=default_system, visible=False)
chatbot = gr.Chatbot(height=400, show_copy_button=True)
audio = gr.Audio(sources=['microphone','upload'], type="filepath", label='语音对话', autoplay=False)
asr_text = gr.Button('🎤 语音识别(语音对话后点击)')
# 创建一个文本框组件,用于输入 prompt。
msg = gr.Textbox(label="Prompt/问题")
asr_text.click(fn=Asr,inputs=[audio],outputs=[msg])
with gr.Row():
clear_history = gr.Button("🧹 清除历史对话")
sumbit = gr.Button("🚀 发送", variant = 'primary')
# 设置按钮的点击事件。当点击时,调用上面定义的 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
sumbit.click(chat_response, inputs=[system_input, msg, chatbot],
outputs=[msg, chatbot])
# 点击后清空后端存储的聊天记录
clear_history.click(fn = clear_session, outputs = [msg, chatbot])
# 设置system并清除历史对话
modify_system.click(fn=modify_system_session,
inputs=[system_input],
outputs=[system_state, system_input, chatbot])
video_button.click(fn = human_respone, inputs = [chatbot, voice, rate, volume, pitch, batch_size, character], outputs = [video])
with gr.Row(variant='panel'):
with gr.Column(variant='panel'):
gr.Markdown("## Test Examples")
gr.Examples(
examples = examples,
fn = Talker_response,
inputs = [msg, character, method, voice],
)
return inference
def app_img():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 任意图片对话"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_source_image"):
with gr.TabItem('Source image'):
with gr.Row():
source_image = gr.Image(label="Source image", type="filepath", elem_id="img2img_image", width=512)
with gr.Tabs(elem_id="question_audio"):
with gr.TabItem('对话'):
with gr.Column(variant='panel'):
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="Input Text", lines=3, info = '文字对话')
with gr.Accordion("Advanced Settings",
open=False,
visible=True) as parameter_article:
voice = gr.Dropdown(tts.SUPPORTED_VOICE,
value='zh-CN-XiaoxiaoNeural',
label="Voice")
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='Rate')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='Volume')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='Pitch')
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
# with gr.Tabs(elem_id="response_audio"):
# with gr.TabItem("语音选择"):
# with gr.Column(variant='panel'):
# voice = gr.Dropdown(VOICES, values='zh-CN-XiaoxiaoNeural')
with gr.Tabs(elem_id="text_examples"):
gr.Markdown("## Text Examples")
examples = [
['应对压力最有效的方法是什么?'],
['如何进行时间管理?'],
['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?'],
['近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?'],
['三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?'],
['撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。'],
['翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.'],
]
gr.Examples(
examples = examples,
inputs = [input_text],
)
# driven_audio = 'answer.wav'
with gr.Column(variant='panel'):
method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'ER-NeRF(Comming Soon!!!)'], value = 'SadTalker', label = '模型选择')
with gr.Tabs(elem_id="sadtalker_checkbox"):
with gr.TabItem('Settings'):
with gr.Accordion("Advanced Settings",
open=False):
gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials")
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
with gr.Row():
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) #
blink_every = gr.Checkbox(label="use eye blink", value=True)
with gr.Row():
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") #
preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
with gr.Row():
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
facerender = gr.Radio(['facevid2vid', 'PIRender'], value='facevid2vid', label='facerender', info="which face render?")
with gr.Row():
batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1)
fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)")
with gr.Tabs(elem_id="sadtalker_genearted"):
gen_video = gr.Video(label="Generated video", format="mp4",scale=0.8)
submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
submit.click(
fn=Talker_response_img,
inputs=[question_audio,
method,
input_text,
voice, rate, volume, pitch,
source_image,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps],
outputs=[gen_video]
)
with gr.Row():
examples = [
[
'examples/source_image/full_body_2.png',
'crop',
False,
False
],
[
'examples/source_image/full_body_1.png',
'crop',
False,
False
],
[
'examples/source_image/full3.png',
'crop',
False,
False
],
[
'examples/source_image/full4.jpeg',
'crop',
False,
False
],
[
'examples/source_image/art_13.png',
'crop',
False,
False
],
[
'examples/source_image/art_5.png',
'crop',
False,
False
],
]
gr.Examples(examples=examples,
fn=Talker_response,
inputs=[
source_image,
preprocess_type,
is_still_mode,
enhancer],
outputs=[gen_video],
# cache_examples=True,
)
return inference
def app_vits():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 语音克隆"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="question_audio"):
with gr.TabItem('对话'):
with gr.Column(variant='panel'):
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="Input Text", lines=3)
voice, rate, volume, pitch, batch_size, character, method = voice_setting(["克隆声音", "克隆烟嗓音"] + tts.SUPPORTED_VOICE)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('数字人问答'):
gen_video = gr.Video(label="Generated video", format="mp4", scale=1, autoplay=False)
video_button = gr.Button("提交", variant='primary')
video_button.click(fn=Talker_response,inputs=[question_audio, method, input_text, voice, rate, volume, pitch, batch_size, character],outputs=[gen_video])
with gr.Row():
with gr.Column(variant='panel'):
gr.Markdown("## Test Examples")
gr.Examples(
examples = [["如何应对压力", "男性角色", "SadTalker", "克隆烟嗓音"], ["北京有什么好玩的地方", "男性角色", "SadTalker", "克隆声音"]] + examples,
fn = Talker_response,
inputs = [input_text, character, method, voice],
)
return inference
if __name__ == "__main__":
# llm = LLM(mode='offline').init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf')
# llm = LLM(mode='offline').init_model('Gemini', 'gemini-pro', api_key = "your api key")
# llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
try:
talker = SadTalker(lazy_load=True)
except Exception as e:
print("SadTalker Error: ", e)
# print("如果使用SadTalker,请先下载SadTalker模型")
gr.Warning("如果使用SadTalker,请先下载SadTalker模型")
try:
from TFG import Wav2Lip
wav2lip = Wav2Lip("checkpoints/wav2lip_gan.pth")
except Exception as e:
print("Wav2Lip Error: ", e)
print("如果使用Wav2Lip,请先下载Wav2Lip模型")
try:
from VITS import GPT_SoVITS
vits = GPT_SoVITS()
except Exception as e:
print("GPT-SoVITS Error: ", e)
print("如果使用VITS,请先下载GPT-SoVITS模型和安装环境")
try:
from ASR import FunASR
asr = FunASR()
except Exception as e:
print("ASR Error: ", e)
print("如果使用FunASR,请先下载FunASR模型和安装环境")
asr = WhisperASR('base')
tts = EdgeTTS()
gr.close_all()
demo_app = app()
demo_img = app_img()
demo_multi = app_multi()
demo_vits = app_vits()
demo = gr.TabbedInterface(interface_list = [demo_app, demo_img, demo_multi, demo_vits],
tab_names = ["文本/语音对话", "任意图片对话", "多轮GPT对话", "语音克隆数字人对话"],
title = "Linly-Talker WebUI")
demo.launch(server_name="127.0.0.1", # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
server_port=port,
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
ssl_certfile=ssl_certfile,
ssl_keyfile=ssl_keyfile,
ssl_verify=False,
debug=True,
) |