Spaces:
Running
Running
import numpy as np | |
import time | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
try: | |
import _raymarching_face as _backend | |
except ImportError: | |
from .backend import _backend | |
# ---------------------------------------- | |
# utils | |
# ---------------------------------------- | |
class _near_far_from_aabb(Function): | |
def forward(ctx, rays_o, rays_d, aabb, min_near=0.2): | |
''' near_far_from_aabb, CUDA implementation | |
Calculate rays' intersection time (near and far) with aabb | |
Args: | |
rays_o: float, [N, 3] | |
rays_d: float, [N, 3] | |
aabb: float, [6], (xmin, ymin, zmin, xmax, ymax, zmax) | |
min_near: float, scalar | |
Returns: | |
nears: float, [N] | |
fars: float, [N] | |
''' | |
if not rays_o.is_cuda: rays_o = rays_o.cuda() | |
if not rays_d.is_cuda: rays_d = rays_d.cuda() | |
rays_o = rays_o.contiguous().view(-1, 3) | |
rays_d = rays_d.contiguous().view(-1, 3) | |
N = rays_o.shape[0] # num rays | |
nears = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device) | |
fars = torch.empty(N, dtype=rays_o.dtype, device=rays_o.device) | |
_backend.near_far_from_aabb(rays_o, rays_d, aabb, N, min_near, nears, fars) | |
return nears, fars | |
near_far_from_aabb = _near_far_from_aabb.apply | |
class _sph_from_ray(Function): | |
def forward(ctx, rays_o, rays_d, radius): | |
''' sph_from_ray, CUDA implementation | |
get spherical coordinate on the background sphere from rays. | |
Assume rays_o are inside the Sphere(radius). | |
Args: | |
rays_o: [N, 3] | |
rays_d: [N, 3] | |
radius: scalar, float | |
Return: | |
coords: [N, 2], in [-1, 1], theta and phi on a sphere. (further-surface) | |
''' | |
if not rays_o.is_cuda: rays_o = rays_o.cuda() | |
if not rays_d.is_cuda: rays_d = rays_d.cuda() | |
rays_o = rays_o.contiguous().view(-1, 3) | |
rays_d = rays_d.contiguous().view(-1, 3) | |
N = rays_o.shape[0] # num rays | |
coords = torch.empty(N, 2, dtype=rays_o.dtype, device=rays_o.device) | |
_backend.sph_from_ray(rays_o, rays_d, radius, N, coords) | |
return coords | |
sph_from_ray = _sph_from_ray.apply | |
class _morton3D(Function): | |
def forward(ctx, coords): | |
''' morton3D, CUDA implementation | |
Args: | |
coords: [N, 3], int32, in [0, 128) (for some reason there is no uint32 tensor in torch...) | |
TODO: check if the coord range is valid! (current 128 is safe) | |
Returns: | |
indices: [N], int32, in [0, 128^3) | |
''' | |
if not coords.is_cuda: coords = coords.cuda() | |
N = coords.shape[0] | |
indices = torch.empty(N, dtype=torch.int32, device=coords.device) | |
_backend.morton3D(coords.int(), N, indices) | |
return indices | |
morton3D = _morton3D.apply | |
class _morton3D_invert(Function): | |
def forward(ctx, indices): | |
''' morton3D_invert, CUDA implementation | |
Args: | |
indices: [N], int32, in [0, 128^3) | |
Returns: | |
coords: [N, 3], int32, in [0, 128) | |
''' | |
if not indices.is_cuda: indices = indices.cuda() | |
N = indices.shape[0] | |
coords = torch.empty(N, 3, dtype=torch.int32, device=indices.device) | |
_backend.morton3D_invert(indices.int(), N, coords) | |
return coords | |
morton3D_invert = _morton3D_invert.apply | |
class _packbits(Function): | |
def forward(ctx, grid, thresh, bitfield=None): | |
''' packbits, CUDA implementation | |
Pack up the density grid into a bit field to accelerate ray marching. | |
Args: | |
grid: float, [C, H * H * H], assume H % 2 == 0 | |
thresh: float, threshold | |
Returns: | |
bitfield: uint8, [C, H * H * H / 8] | |
''' | |
if not grid.is_cuda: grid = grid.cuda() | |
grid = grid.contiguous() | |
C = grid.shape[0] | |
H3 = grid.shape[1] | |
N = C * H3 // 8 | |
if bitfield is None: | |
bitfield = torch.empty(N, dtype=torch.uint8, device=grid.device) | |
_backend.packbits(grid, N, thresh, bitfield) | |
return bitfield | |
packbits = _packbits.apply | |
class _morton3D_dilation(Function): | |
def forward(ctx, grid): | |
''' max pooling with morton coord, CUDA implementation | |
or maybe call it dilation... we don't support adjust kernel size. | |
Args: | |
grid: float, [C, H * H * H], assume H % 2 == 0 | |
Returns: | |
grid_dilate: float, [C, H * H * H], assume H % 2 == 0bitfield: uint8, [C, H * H * H / 8] | |
''' | |
if not grid.is_cuda: grid = grid.cuda() | |
grid = grid.contiguous() | |
C = grid.shape[0] | |
H3 = grid.shape[1] | |
H = int(np.cbrt(H3)) | |
grid_dilation = torch.empty_like(grid) | |
_backend.morton3D_dilation(grid, C, H, grid_dilation) | |
return grid_dilation | |
morton3D_dilation = _morton3D_dilation.apply | |
# ---------------------------------------- | |
# train functions | |
# ---------------------------------------- | |
class _march_rays_train(Function): | |
def forward(ctx, rays_o, rays_d, bound, density_bitfield, C, H, nears, fars, step_counter=None, mean_count=-1, perturb=False, align=-1, force_all_rays=False, dt_gamma=0, max_steps=1024): | |
''' march rays to generate points (forward only) | |
Args: | |
rays_o/d: float, [N, 3] | |
bound: float, scalar | |
density_bitfield: uint8: [CHHH // 8] | |
C: int | |
H: int | |
nears/fars: float, [N] | |
step_counter: int32, (2), used to count the actual number of generated points. | |
mean_count: int32, estimated mean steps to accelerate training. (but will randomly drop rays if the actual point count exceeded this threshold.) | |
perturb: bool | |
align: int, pad output so its size is dividable by align, set to -1 to disable. | |
force_all_rays: bool, ignore step_counter and mean_count, always calculate all rays. Useful if rendering the whole image, instead of some rays. | |
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance) | |
max_steps: int, max number of sampled points along each ray, also affect min_stepsize. | |
Returns: | |
xyzs: float, [M, 3], all generated points' coords. (all rays concated, need to use `rays` to extract points belonging to each ray) | |
dirs: float, [M, 3], all generated points' view dirs. | |
deltas: float, [M, 2], first is delta_t, second is rays_t | |
rays: int32, [N, 3], all rays' (index, point_offset, point_count), e.g., xyzs[rays[i, 1]:rays[i, 1] + rays[i, 2]] --> points belonging to rays[i, 0] | |
''' | |
if not rays_o.is_cuda: rays_o = rays_o.cuda() | |
if not rays_d.is_cuda: rays_d = rays_d.cuda() | |
if not density_bitfield.is_cuda: density_bitfield = density_bitfield.cuda() | |
rays_o = rays_o.contiguous().view(-1, 3) | |
rays_d = rays_d.contiguous().view(-1, 3) | |
density_bitfield = density_bitfield.contiguous() | |
N = rays_o.shape[0] # num rays | |
M = N * max_steps # init max points number in total | |
# running average based on previous epoch (mimic `measured_batch_size_before_compaction` in instant-ngp) | |
# It estimate the max points number to enable faster training, but will lead to random ignored rays if underestimated. | |
if not force_all_rays and mean_count > 0: | |
if align > 0: | |
mean_count += align - mean_count % align | |
M = mean_count | |
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) | |
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) | |
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) | |
rays = torch.empty(N, 3, dtype=torch.int32, device=rays_o.device) # id, offset, num_steps | |
if step_counter is None: | |
step_counter = torch.zeros(2, dtype=torch.int32, device=rays_o.device) # point counter, ray counter | |
if perturb: | |
noises = torch.rand(N, dtype=rays_o.dtype, device=rays_o.device) | |
else: | |
noises = torch.zeros(N, dtype=rays_o.dtype, device=rays_o.device) | |
_backend.march_rays_train(rays_o, rays_d, density_bitfield, bound, dt_gamma, max_steps, N, C, H, M, nears, fars, xyzs, dirs, deltas, rays, step_counter, noises) # m is the actually used points number | |
#print(step_counter, M) | |
# only used at the first (few) epochs. | |
if force_all_rays or mean_count <= 0: | |
m = step_counter[0].item() # D2H copy | |
if align > 0: | |
m += align - m % align | |
xyzs = xyzs[:m] | |
dirs = dirs[:m] | |
deltas = deltas[:m] | |
torch.cuda.empty_cache() | |
ctx.save_for_backward(rays, deltas) | |
return xyzs, dirs, deltas, rays | |
# to support optimizing camera poses. | |
def backward(ctx, grad_xyzs, grad_dirs, grad_deltas, grad_rays): | |
# grad_xyzs/dirs: [M, 3] | |
rays, deltas = ctx.saved_tensors | |
N = rays.shape[0] | |
M = grad_xyzs.shape[0] | |
grad_rays_o = torch.zeros(N, 3, device=rays.device) | |
grad_rays_d = torch.zeros(N, 3, device=rays.device) | |
_backend.march_rays_train_backward(grad_xyzs, grad_dirs, rays, deltas, N, M, grad_rays_o, grad_rays_d) | |
return grad_rays_o, grad_rays_d, None, None, None, None, None, None, None, None, None, None, None, None, None | |
march_rays_train = _march_rays_train.apply | |
class _composite_rays_train(Function): | |
def forward(ctx, sigmas, rgbs, ambient, deltas, rays, T_thresh=1e-4): | |
''' composite rays' rgbs, according to the ray marching formula. | |
Args: | |
rgbs: float, [M, 3] | |
sigmas: float, [M,] | |
ambient: float, [M,] (after summing up the last dimension) | |
deltas: float, [M, 2] | |
rays: int32, [N, 3] | |
Returns: | |
weights_sum: float, [N,], the alpha channel | |
depth: float, [N, ], the Depth | |
image: float, [N, 3], the RGB channel (after multiplying alpha!) | |
''' | |
sigmas = sigmas.contiguous() | |
rgbs = rgbs.contiguous() | |
ambient = ambient.contiguous() | |
M = sigmas.shape[0] | |
N = rays.shape[0] | |
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device) | |
_backend.composite_rays_train_forward(sigmas, rgbs, ambient, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, depth, image) | |
ctx.save_for_backward(sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image) | |
ctx.dims = [M, N, T_thresh] | |
return weights_sum, ambient_sum, depth, image | |
def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_depth, grad_image): | |
# NOTE: grad_depth is not used now! It won't be propagated to sigmas. | |
grad_weights_sum = grad_weights_sum.contiguous() | |
grad_ambient_sum = grad_ambient_sum.contiguous() | |
grad_image = grad_image.contiguous() | |
sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image = ctx.saved_tensors | |
M, N, T_thresh = ctx.dims | |
grad_sigmas = torch.zeros_like(sigmas) | |
grad_rgbs = torch.zeros_like(rgbs) | |
grad_ambient = torch.zeros_like(ambient) | |
_backend.composite_rays_train_backward(grad_weights_sum, grad_ambient_sum, grad_image, sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient) | |
return grad_sigmas, grad_rgbs, grad_ambient, None, None, None | |
composite_rays_train = _composite_rays_train.apply | |
# ---------------------------------------- | |
# infer functions | |
# ---------------------------------------- | |
class _march_rays(Function): | |
def forward(ctx, n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, density_bitfield, C, H, near, far, align=-1, perturb=False, dt_gamma=0, max_steps=1024): | |
''' march rays to generate points (forward only, for inference) | |
Args: | |
n_alive: int, number of alive rays | |
n_step: int, how many steps we march | |
rays_alive: int, [N], the alive rays' IDs in N (N >= n_alive, but we only use first n_alive) | |
rays_t: float, [N], the alive rays' time, we only use the first n_alive. | |
rays_o/d: float, [N, 3] | |
bound: float, scalar | |
density_bitfield: uint8: [CHHH // 8] | |
C: int | |
H: int | |
nears/fars: float, [N] | |
align: int, pad output so its size is dividable by align, set to -1 to disable. | |
perturb: bool/int, int > 0 is used as the random seed. | |
dt_gamma: float, called cone_angle in instant-ngp, exponentially accelerate ray marching if > 0. (very significant effect, but generally lead to worse performance) | |
max_steps: int, max number of sampled points along each ray, also affect min_stepsize. | |
Returns: | |
xyzs: float, [n_alive * n_step, 3], all generated points' coords | |
dirs: float, [n_alive * n_step, 3], all generated points' view dirs. | |
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth). | |
''' | |
if not rays_o.is_cuda: rays_o = rays_o.cuda() | |
if not rays_d.is_cuda: rays_d = rays_d.cuda() | |
rays_o = rays_o.contiguous().view(-1, 3) | |
rays_d = rays_d.contiguous().view(-1, 3) | |
M = n_alive * n_step | |
if align > 0: | |
M += align - (M % align) | |
xyzs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) | |
dirs = torch.zeros(M, 3, dtype=rays_o.dtype, device=rays_o.device) | |
deltas = torch.zeros(M, 2, dtype=rays_o.dtype, device=rays_o.device) # 2 vals, one for rgb, one for depth | |
if perturb: | |
# torch.manual_seed(perturb) # test_gui uses spp index as seed | |
noises = torch.rand(n_alive, dtype=rays_o.dtype, device=rays_o.device) | |
else: | |
noises = torch.zeros(n_alive, dtype=rays_o.dtype, device=rays_o.device) | |
_backend.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, bound, dt_gamma, max_steps, C, H, density_bitfield, near, far, xyzs, dirs, deltas, noises) | |
return xyzs, dirs, deltas | |
march_rays = _march_rays.apply | |
class _composite_rays(Function): | |
# need to cast sigmas & rgbs to float | |
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh=1e-2): | |
''' composite rays' rgbs, according to the ray marching formula. (for inference) | |
Args: | |
n_alive: int, number of alive rays | |
n_step: int, how many steps we march | |
rays_alive: int, [n_alive], the alive rays' IDs in N (N >= n_alive) | |
rays_t: float, [N], the alive rays' time | |
sigmas: float, [n_alive * n_step,] | |
rgbs: float, [n_alive * n_step, 3] | |
deltas: float, [n_alive * n_step, 2], all generated points' deltas (here we record two deltas, the first is for RGB, the second for depth). | |
In-place Outputs: | |
weights_sum: float, [N,], the alpha channel | |
depth: float, [N,], the depth value | |
image: float, [N, 3], the RGB channel (after multiplying alpha!) | |
''' | |
_backend.composite_rays(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image) | |
return tuple() | |
composite_rays = _composite_rays.apply | |
class _composite_rays_ambient(Function): | |
# need to cast sigmas & rgbs to float | |
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum, T_thresh=1e-2): | |
_backend.composite_rays_ambient(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum) | |
return tuple() | |
composite_rays_ambient = _composite_rays_ambient.apply | |
# custom | |
class _composite_rays_train_sigma(Function): | |
def forward(ctx, sigmas, rgbs, ambient, deltas, rays, T_thresh=1e-4): | |
''' composite rays' rgbs, according to the ray marching formula. | |
Args: | |
rgbs: float, [M, 3] | |
sigmas: float, [M,] | |
ambient: float, [M,] (after summing up the last dimension) | |
deltas: float, [M, 2] | |
rays: int32, [N, 3] | |
Returns: | |
weights_sum: float, [N,], the alpha channel | |
depth: float, [N, ], the Depth | |
image: float, [N, 3], the RGB channel (after multiplying alpha!) | |
''' | |
sigmas = sigmas.contiguous() | |
rgbs = rgbs.contiguous() | |
ambient = ambient.contiguous() | |
M = sigmas.shape[0] | |
N = rays.shape[0] | |
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device) | |
_backend.composite_rays_train_sigma_forward(sigmas, rgbs, ambient, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, depth, image) | |
ctx.save_for_backward(sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image) | |
ctx.dims = [M, N, T_thresh] | |
return weights_sum, ambient_sum, depth, image | |
def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_depth, grad_image): | |
# NOTE: grad_depth is not used now! It won't be propagated to sigmas. | |
grad_weights_sum = grad_weights_sum.contiguous() | |
grad_ambient_sum = grad_ambient_sum.contiguous() | |
grad_image = grad_image.contiguous() | |
sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, depth, image = ctx.saved_tensors | |
M, N, T_thresh = ctx.dims | |
grad_sigmas = torch.zeros_like(sigmas) | |
grad_rgbs = torch.zeros_like(rgbs) | |
grad_ambient = torch.zeros_like(ambient) | |
_backend.composite_rays_train_sigma_backward(grad_weights_sum, grad_ambient_sum, grad_image, sigmas, rgbs, ambient, deltas, rays, weights_sum, ambient_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient) | |
return grad_sigmas, grad_rgbs, grad_ambient, None, None, None | |
composite_rays_train_sigma = _composite_rays_train_sigma.apply | |
class _composite_rays_ambient_sigma(Function): | |
# need to cast sigmas & rgbs to float | |
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum, T_thresh=1e-2): | |
_backend.composite_rays_ambient_sigma(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, weights_sum, depth, image, ambient_sum) | |
return tuple() | |
composite_rays_ambient_sigma = _composite_rays_ambient_sigma.apply | |
# uncertainty | |
class _composite_rays_train_uncertainty(Function): | |
def forward(ctx, sigmas, rgbs, ambient, uncertainty, deltas, rays, T_thresh=1e-4): | |
''' composite rays' rgbs, according to the ray marching formula. | |
Args: | |
rgbs: float, [M, 3] | |
sigmas: float, [M,] | |
ambient: float, [M,] (after summing up the last dimension) | |
deltas: float, [M, 2] | |
rays: int32, [N, 3] | |
Returns: | |
weights_sum: float, [N,], the alpha channel | |
depth: float, [N, ], the Depth | |
image: float, [N, 3], the RGB channel (after multiplying alpha!) | |
''' | |
sigmas = sigmas.contiguous() | |
rgbs = rgbs.contiguous() | |
ambient = ambient.contiguous() | |
uncertainty = uncertainty.contiguous() | |
M = sigmas.shape[0] | |
N = rays.shape[0] | |
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
ambient_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
uncertainty_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device) | |
_backend.composite_rays_train_uncertainty_forward(sigmas, rgbs, ambient, uncertainty, deltas, rays, M, N, T_thresh, weights_sum, ambient_sum, uncertainty_sum, depth, image) | |
ctx.save_for_backward(sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, depth, image) | |
ctx.dims = [M, N, T_thresh] | |
return weights_sum, ambient_sum, uncertainty_sum, depth, image | |
def backward(ctx, grad_weights_sum, grad_ambient_sum, grad_uncertainty_sum, grad_depth, grad_image): | |
# NOTE: grad_depth is not used now! It won't be propagated to sigmas. | |
grad_weights_sum = grad_weights_sum.contiguous() | |
grad_ambient_sum = grad_ambient_sum.contiguous() | |
grad_uncertainty_sum = grad_uncertainty_sum.contiguous() | |
grad_image = grad_image.contiguous() | |
sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, depth, image = ctx.saved_tensors | |
M, N, T_thresh = ctx.dims | |
grad_sigmas = torch.zeros_like(sigmas) | |
grad_rgbs = torch.zeros_like(rgbs) | |
grad_ambient = torch.zeros_like(ambient) | |
grad_uncertainty = torch.zeros_like(uncertainty) | |
_backend.composite_rays_train_uncertainty_backward(grad_weights_sum, grad_ambient_sum, grad_uncertainty_sum, grad_image, sigmas, rgbs, ambient, uncertainty, deltas, rays, weights_sum, ambient_sum, uncertainty_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_ambient, grad_uncertainty) | |
return grad_sigmas, grad_rgbs, grad_ambient, grad_uncertainty, None, None, None | |
composite_rays_train_uncertainty = _composite_rays_train_uncertainty.apply | |
class _composite_rays_uncertainty(Function): | |
# need to cast sigmas & rgbs to float | |
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum, T_thresh=1e-2): | |
_backend.composite_rays_uncertainty(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum) | |
return tuple() | |
composite_rays_uncertainty = _composite_rays_uncertainty.apply | |
# triplane(eye) | |
class _composite_rays_train_triplane(Function): | |
def forward(ctx, sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, T_thresh=1e-4): | |
''' composite rays' rgbs, according to the ray marching formula. | |
Args: | |
rgbs: float, [M, 3] | |
sigmas: float, [M,] | |
ambient: float, [M,] (after summing up the last dimension) | |
deltas: float, [M, 2] | |
rays: int32, [N, 3] | |
Returns: | |
weights_sum: float, [N,], the alpha channel | |
depth: float, [N, ], the Depth | |
image: float, [N, 3], the RGB channel (after multiplying alpha!) | |
''' | |
sigmas = sigmas.contiguous() | |
rgbs = rgbs.contiguous() | |
amb_aud = amb_aud.contiguous() | |
amb_eye = amb_eye.contiguous() | |
uncertainty = uncertainty.contiguous() | |
M = sigmas.shape[0] | |
N = rays.shape[0] | |
weights_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
amb_aud_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
amb_eye_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
uncertainty_sum = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
depth = torch.empty(N, dtype=sigmas.dtype, device=sigmas.device) | |
image = torch.empty(N, 3, dtype=sigmas.dtype, device=sigmas.device) | |
_backend.composite_rays_train_triplane_forward(sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, M, N, T_thresh, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image) | |
ctx.save_for_backward(sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image) | |
ctx.dims = [M, N, T_thresh] | |
return weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image | |
def backward(ctx, grad_weights_sum, grad_amb_aud_sum, grad_amb_eye_sum, grad_uncertainty_sum, grad_depth, grad_image): | |
# NOTE: grad_depth is not used now! It won't be propagated to sigmas. | |
grad_weights_sum = grad_weights_sum.contiguous() | |
grad_amb_aud_sum = grad_amb_aud_sum.contiguous() | |
grad_amb_eye_sum = grad_amb_eye_sum.contiguous() | |
grad_uncertainty_sum = grad_uncertainty_sum.contiguous() | |
grad_image = grad_image.contiguous() | |
sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image = ctx.saved_tensors | |
M, N, T_thresh = ctx.dims | |
grad_sigmas = torch.zeros_like(sigmas) | |
grad_rgbs = torch.zeros_like(rgbs) | |
grad_amb_aud = torch.zeros_like(amb_aud) | |
grad_amb_eye = torch.zeros_like(amb_eye) | |
grad_uncertainty = torch.zeros_like(uncertainty) | |
_backend.composite_rays_train_triplane_backward(grad_weights_sum, grad_amb_aud_sum, grad_amb_eye_sum, grad_uncertainty_sum, grad_image, sigmas, rgbs, amb_aud, amb_eye, uncertainty, deltas, rays, weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, image, M, N, T_thresh, grad_sigmas, grad_rgbs, grad_amb_aud, grad_amb_eye, grad_uncertainty) | |
return grad_sigmas, grad_rgbs, grad_amb_aud, grad_amb_eye, grad_uncertainty, None, None, None | |
composite_rays_train_triplane = _composite_rays_train_triplane.apply | |
class _composite_rays_triplane(Function): | |
# need to cast sigmas & rgbs to float | |
def forward(ctx, n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambs_aud, ambs_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum, T_thresh=1e-2): | |
_backend.composite_rays_triplane(n_alive, n_step, T_thresh, rays_alive, rays_t, sigmas, rgbs, deltas, ambs_aud, ambs_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum) | |
return tuple() | |
composite_rays_triplane = _composite_rays_triplane.apply |