Spaces:
Running
Running
from transformers import AutoModelForCausalLM, AutoTokenizer | |
class LLMTemplate: | |
def __init__(self, model_name_or_path, mode='offline'): | |
""" | |
初始化LLM模板 | |
Args: | |
model_name_or_path (str): 模型名称或路径 | |
mode (str, optional): 模式,'offline'表示离线模式,'api'表示使用API模式。默认为'offline'。 | |
""" | |
self.mode = mode | |
# 模型初始化 | |
self.model, self.tokenizer = self.init_model(model_name_or_path) | |
self.history = None | |
def init_model(self, model_name_or_path): | |
""" | |
初始化语言模型 | |
Args: | |
model_name_or_path (str): 模型名称或路径 | |
Returns: | |
model: 加载的语言模型 | |
tokenizer: 加载的tokenizer | |
""" | |
# TODO: 模型加载 | |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, | |
device_map="auto", | |
trust_remote_code=True).eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) | |
return model, tokenizer | |
def generate(self, prompt, system_prompt=""): | |
""" | |
生成对话响应 | |
Args: | |
prompt (str): 对话的提示 | |
system_prompt (str, optional): 系统提示。默认为""。 | |
Returns: | |
str: 对话响应 | |
""" | |
# TODO: 模型预测 | |
# 这一块需要尤其注意,这里的模板是借鉴了HuggingFace上的一些推理模板,需要根据自己的模型进行调整 | |
# 这里的模板主要是为了方便调试,因为模型预测的时候,会有很多不同的输入,所以可以根据自己的模型进行调整 | |
if self.mode != 'api': | |
try: | |
response, self.history = self.model.chat(self.tokenizer, prompt, history=self.history, system = system_prompt) | |
return response | |
except Exception as e: | |
print(e) | |
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n" | |
else: | |
return self.predict_api(prompt) | |
def predict_api(self, prompt): | |
""" | |
使用API预测对话响应 | |
Args: | |
prompt (str): 对话的提示 | |
Returns: | |
str: 对话响应 | |
""" | |
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下''' | |
pass | |
def chat(self, system_prompt, message): | |
response = self.generate(message, system_prompt) | |
self.history.append((message, response)) | |
return response, self.history | |
def clear_history(self): | |
self.history = [] | |