Spaces:
Running
Running
import os | |
import random | |
import gradio as gr | |
import time | |
from zhconv import convert | |
from LLM import LLM | |
from ASR import WhisperASR | |
from TFG import SadTalker | |
from TTS import EdgeTTS | |
from src.cost_time import calculate_time | |
from configs import * | |
os.environ["GRADIO_TEMP_DIR"]= './temp' | |
def get_title(title = 'Linly 智能对话系统 (Linly-Talker)'): | |
description = f""" | |
<p style="text-align: center; font-weight: bold;"> | |
<span style="font-size: 28px;">{title}</span> | |
<br> | |
<span style="font-size: 18px;" id="paper-info"> | |
[<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>] | |
[<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>] | |
[<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>] | |
[<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>] | |
</span> | |
<br> | |
<span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span> | |
</p> | |
""" | |
return description | |
# 默认text的Example | |
examples = [ | |
['应对压力最有效的方法是什么?', '女性角色', 'SadTalker', 'zh-CN-XiaoxiaoNeural'], | |
['如何进行时间管理?','男性角色', 'SadTalker', 'zh-CN-YunyangNeural'], | |
['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?','女性角色', 'SadTalker', 'zh-HK-HiuMaanNeural'], | |
['近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?', '男性角色', 'SadTalker', 'zh-TW-YunJheNeural'], | |
['撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。', '男性角色', 'Wav2Lip', 'zh-CN-YunyangNeural'], | |
['翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.', '女性角色', 'SadTalker', 'zh-CN-XiaoxiaoNeural'], | |
] | |
# 设置默认system | |
default_system = '你是一个很有帮助的助手' | |
# 设定默认参数值,可修改 | |
blink_every = True | |
size_of_image = 256 | |
preprocess_type = 'crop' | |
facerender = 'facevid2vid' | |
enhancer = False | |
is_still_mode = False | |
exp_weight = 1 | |
use_ref_video = False | |
ref_video = None | |
ref_info = 'pose' | |
use_idle_mode = False | |
length_of_audio = 5 | |
def Asr(audio): | |
try: | |
question = asr.transcribe(audio) | |
question = convert(question, 'zh-cn') | |
except Exception as e: | |
print("ASR Error: ", e) | |
question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可' | |
gr.Warning(question) | |
return question | |
def LLM_response(question_audio, question, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0): | |
answer = llm.generate(question) | |
print(answer) | |
if voice in tts.SUPPORTED_VOICE: | |
try: | |
tts.predict(answer, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt') | |
except: | |
os.system(f'edge-tts --text "{answer}" --voice {voice} --write-media answer.wav') | |
return 'answer.wav', 'answer.vtt', answer | |
elif voice == "克隆烟嗓音": | |
try: | |
gpt_path = "../GPT-SoVITS/GPT_weights/yansang-e15.ckpt" | |
sovits_path = "../GPT-SoVITS/SoVITS_weights/yansang_e16_s144.pth" | |
vits.load_model(gpt_path, sovits_path) | |
vits.predict(ref_wav_path = "examples/slicer_opt/vocal_output.wav_10.wav_0000846400_0000957760.wav", | |
prompt_text = "你为什么要一次一次的伤我的心啊?", | |
prompt_language = "中文", | |
text = answer, | |
text_language = "中英混合", | |
how_to_cut = "按标点符号切", | |
save_path = 'answer.wav') | |
return 'answer.wav', None, answer | |
except Exception as e: | |
gr.Error("无克隆环境或者无克隆模型权重,无法克隆声音", e) | |
return None, None, None | |
elif voice == "克隆声音": | |
try: | |
if question_audio is None: | |
gr.Error("无声音输入,无法克隆声音") | |
# print("无声音输入,无法克隆声音") | |
return None, None, None | |
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth" | |
vits.load_model(gpt_path, sovits_path) | |
vits.predict(ref_wav_path = question_audio, | |
prompt_text = question, | |
prompt_language = "中文", | |
text = answer, | |
text_language = "中英混合", | |
how_to_cut = "凑四句一切", | |
save_path = 'answer.wav') | |
return 'answer.wav', None, answer | |
except Exception as e: | |
gr.Error("无克隆环境或者无克隆模型权重,无法克隆声音", e) | |
return None, None, None | |
def Talker_response(question_audio = None, method = 'SadTalker', text = '', voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0, batch_size = 2, character = '女性角色'): | |
if character == '女性角色': | |
# 女性角色 | |
source_image, pic_path = r'inputs/girl.png', r'inputs/girl.png' | |
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png" | |
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat" | |
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663]) | |
default_voice = 'zh-CN-XiaoxiaoNeural' | |
elif character == '男性角色': | |
# 男性角色 | |
source_image = r'./inputs/boy.png' | |
pic_path = "./inputs/boy.png" | |
crop_pic_path = "./inputs/first_frame_dir_boy/boy.png" | |
first_coeff_path = "./inputs/first_frame_dir_boy/boy.mat" | |
crop_info = ((876, 747), (0, 0, 886, 838), [10.382158280494476, 0, 886, 747.7078990925525]) | |
default_voice = 'zh-CN-YunyangNeural' | |
else: | |
gr.Error('未知角色') | |
return None | |
voice = default_voice if voice not in tts.SUPPORTED_VOICE+["克隆烟嗓音", "克隆声音"] else voice | |
print(voice, character) | |
driven_audio, driven_vtt, _ = LLM_response(question_audio, text, voice, rate, volume, pitch) | |
pose_style = random.randint(0, 45) | |
if method == 'SadTalker': | |
video = talker.test(pic_path, | |
crop_pic_path, | |
first_coeff_path, | |
crop_info, | |
source_image, | |
driven_audio, | |
preprocess_type, | |
is_still_mode, | |
enhancer, | |
batch_size, | |
size_of_image, | |
pose_style, | |
facerender, | |
exp_weight, | |
use_ref_video, | |
ref_video, | |
ref_info, | |
use_idle_mode, | |
length_of_audio, | |
blink_every, | |
fps=20) | |
elif method == 'Wav2Lip': | |
video = wav2lip.predict(crop_pic_path, driven_audio, batch_size) | |
else: | |
return None | |
if driven_vtt: | |
return video, driven_vtt | |
else: | |
return video | |
def chat_response(system, message, history): | |
# response = llm.generate(message) | |
response, history = llm.chat(system, message, history) | |
print(history) | |
# 流式输出 | |
for i in range(len(response)): | |
time.sleep(0.01) | |
yield "", history[:-1] + [(message, response[:i+1])] | |
return "", history | |
def human_respone(history, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0, batch_size = 2, character = '女性角色'): | |
response = history[-1][1] | |
driven_audio, video_vtt = 'answer.wav', 'answer.vtt' | |
if character == '女性角色': | |
# 女性角色 | |
source_image, pic_path = r'./inputs/girl.png', r"./inputs/girl.png" | |
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png" | |
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat" | |
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663]) | |
default_voice = 'zh-CN-XiaoxiaoNeural' | |
elif character == '男性角色': | |
# 男性角色 | |
source_image = r'./inputs/boy.png' | |
pic_path = "./inputs/boy.png" | |
crop_pic_path = "./inputs/first_frame_dir_boy/boy.png" | |
first_coeff_path = "./inputs/first_frame_dir_boy/boy.mat" | |
crop_info = ((876, 747), (0, 0, 886, 838), [10.382158280494476, 0, 886, 747.7078990925525]) | |
default_voice = 'zh-CN-YunyangNeural' | |
voice = default_voice if voice not in tts.SUPPORTED_VOICE else voice | |
tts.predict(response, voice, rate, volume, pitch, driven_audio, video_vtt) | |
pose_style = random.randint(0, 45) # 随机选择 | |
video_path = talker.test(pic_path, | |
crop_pic_path, | |
first_coeff_path, | |
crop_info, | |
source_image, | |
driven_audio, | |
preprocess_type, | |
is_still_mode, | |
enhancer, | |
batch_size, | |
size_of_image, | |
pose_style, | |
facerender, | |
exp_weight, | |
use_ref_video, | |
ref_video, | |
ref_info, | |
use_idle_mode, | |
length_of_audio, | |
blink_every, | |
fps=20) | |
return video_path, video_vtt | |
def modify_system_session(system: str) -> str: | |
if system is None or len(system) == 0: | |
system = default_system | |
llm.clear_history() | |
return system, system, [] | |
def clear_session(): | |
# clear history | |
llm.clear_history() | |
return '', [] | |
def voice_setting(suport_voice): | |
with gr.Accordion("Advanced Settings(高级设置语音参数) ", open=False): | |
voice = gr.Dropdown(suport_voice, | |
label="声音选择 Voice", | |
value = "克隆声音" if '克隆声音' in suport_voice else None) | |
rate = gr.Slider(minimum=-100, | |
maximum=100, | |
value=0, | |
step=1.0, | |
label='声音速率 Rate') | |
volume = gr.Slider(minimum=0, | |
maximum=100, | |
value=100, | |
step=1, | |
label='声音音量 Volume') | |
pitch = gr.Slider(minimum=-100, | |
maximum=100, | |
value=0, | |
step=1, | |
label='声音音调 Pitch') | |
batch_size = gr.Slider(minimum=1, | |
maximum=10, | |
value=2, | |
step=1, | |
label='模型参数 调节可以加快生成速度 Talker Batch size') | |
character = gr.Radio(['女性角色', '男性角色'], label="角色选择", value='女性角色') | |
method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'ER-NeRF(Comming Soon!!!)'], value = 'SadTalker', label = '模型选择') | |
return voice, rate, volume, pitch, batch_size, character, method | |
def Talker_response_img(question_audio, method, text, voice, rate, volume, pitch, source_image, | |
preprocess_type, | |
is_still_mode, | |
enhancer, | |
batch_size, | |
size_of_image, | |
pose_style, | |
facerender, | |
exp_weight, | |
blink_every, | |
fps): | |
driven_audio, driven_vtt, _ = LLM_response(question_audio, text, voice, rate, volume, pitch) | |
if method == 'SadTalker': | |
video = talker.test2(source_image, | |
driven_audio, | |
preprocess_type, | |
is_still_mode, | |
enhancer, | |
batch_size, | |
size_of_image, | |
pose_style, | |
facerender, | |
exp_weight, | |
use_ref_video, | |
ref_video, | |
ref_info, | |
use_idle_mode, | |
length_of_audio, | |
blink_every, | |
fps=fps) | |
elif method == 'Wav2Lip': | |
video = wav2lip.predict(source_image, driven_audio, batch_size) | |
else: | |
return None | |
if driven_vtt: | |
return video, driven_vtt | |
else: | |
return video | |
def app(): | |
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference: | |
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 文本/语音对话")) | |
with gr.Row(equal_height=False): | |
with gr.Column(variant='panel'): | |
with gr.Tabs(elem_id="question_audio"): | |
with gr.TabItem('对话'): | |
with gr.Column(variant='panel'): | |
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话') | |
input_text = gr.Textbox(label="Input Text", lines=3) | |
voice, rate, volume, pitch, batch_size, character, method = voice_setting(tts.SUPPORTED_VOICE) | |
asr_text = gr.Button('语音识别(语音对话后点击)') | |
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text]) | |
with gr.Column(variant='panel'): | |
with gr.Tabs(): | |
with gr.TabItem('数字人问答'): | |
gen_video = gr.Video(label="生成视频", format="mp4", scale=1, autoplay=False) | |
video_button = gr.Button("提交视频生成", variant='primary') | |
video_button.click(fn=Talker_response,inputs=[question_audio, method, input_text,voice, rate, volume, pitch, batch_size, character],outputs=[gen_video]) | |
with gr.Row(): | |
with gr.Column(variant='panel'): | |
gr.Markdown("## Test Examples") | |
gr.Examples( | |
examples = examples, | |
fn = Talker_response, | |
inputs = [input_text, character, method, voice], | |
) | |
return inference | |
def app_multi(): | |
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference: | |
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 多轮GPT对话")) | |
with gr.Row(): | |
with gr.Column(): | |
voice, rate, volume, pitch, batch_size, character, method = voice_setting(tts.SUPPORTED_VOICE) | |
video = gr.Video(label = '数字人问答', scale = 0.5) | |
video_button = gr.Button("🎬 生成数字人视频(对话后)", variant = 'primary') | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
system_input = gr.Textbox(value=default_system, lines=1, label='System (设定角色)') | |
with gr.Column(scale=1): | |
modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2) | |
system_state = gr.Textbox(value=default_system, visible=False) | |
chatbot = gr.Chatbot(height=400, show_copy_button=True) | |
audio = gr.Audio(sources=['microphone','upload'], type="filepath", label='语音对话', autoplay=False) | |
asr_text = gr.Button('🎤 语音识别(语音对话后点击)') | |
# 创建一个文本框组件,用于输入 prompt。 | |
msg = gr.Textbox(label="Prompt/问题") | |
asr_text.click(fn=Asr,inputs=[audio],outputs=[msg]) | |
with gr.Row(): | |
clear_history = gr.Button("🧹 清除历史对话") | |
sumbit = gr.Button("🚀 发送", variant = 'primary') | |
# 设置按钮的点击事件。当点击时,调用上面定义的 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。 | |
sumbit.click(chat_response, inputs=[system_input, msg, chatbot], | |
outputs=[msg, chatbot]) | |
# 点击后清空后端存储的聊天记录 | |
clear_history.click(fn = clear_session, outputs = [msg, chatbot]) | |
# 设置system并清除历史对话 | |
modify_system.click(fn=modify_system_session, | |
inputs=[system_input], | |
outputs=[system_state, system_input, chatbot]) | |
video_button.click(fn = human_respone, inputs = [chatbot, voice, rate, volume, pitch, batch_size, character], outputs = [video]) | |
with gr.Row(variant='panel'): | |
with gr.Column(variant='panel'): | |
gr.Markdown("## Test Examples") | |
gr.Examples( | |
examples = examples, | |
fn = Talker_response, | |
inputs = [msg, character, method, voice], | |
) | |
return inference | |
def app_img(): | |
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference: | |
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 任意图片对话")) | |
with gr.Row(equal_height=False): | |
with gr.Column(variant='panel'): | |
with gr.Tabs(elem_id="sadtalker_source_image"): | |
with gr.TabItem('Source image'): | |
with gr.Row(): | |
source_image = gr.Image(label="Source image", type="filepath", elem_id="img2img_image", width=512) | |
with gr.Tabs(elem_id="question_audio"): | |
with gr.TabItem('对话'): | |
with gr.Column(variant='panel'): | |
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话') | |
input_text = gr.Textbox(label="Input Text", lines=3, info = '文字对话') | |
with gr.Accordion("Advanced Settings", | |
open=False, | |
visible=True) as parameter_article: | |
voice = gr.Dropdown(tts.SUPPORTED_VOICE, | |
value='zh-CN-XiaoxiaoNeural', | |
label="Voice") | |
rate = gr.Slider(minimum=-100, | |
maximum=100, | |
value=0, | |
step=1.0, | |
label='Rate') | |
volume = gr.Slider(minimum=0, | |
maximum=100, | |
value=100, | |
step=1, | |
label='Volume') | |
pitch = gr.Slider(minimum=-100, | |
maximum=100, | |
value=0, | |
step=1, | |
label='Pitch') | |
asr_text = gr.Button('语音识别(语音对话后点击)') | |
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text]) | |
# with gr.Tabs(elem_id="response_audio"): | |
# with gr.TabItem("语音选择"): | |
# with gr.Column(variant='panel'): | |
# voice = gr.Dropdown(VOICES, values='zh-CN-XiaoxiaoNeural') | |
with gr.Tabs(elem_id="text_examples"): | |
gr.Markdown("## Text Examples") | |
examples = [ | |
['应对压力最有效的方法是什么?'], | |
['如何进行时间管理?'], | |
['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?'], | |
['近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?'], | |
['三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?'], | |
['撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。'], | |
['翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.'], | |
] | |
gr.Examples( | |
examples = examples, | |
inputs = [input_text], | |
) | |
# driven_audio = 'answer.wav' | |
with gr.Column(variant='panel'): | |
method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'ER-NeRF(Comming Soon!!!)'], value = 'SadTalker', label = '模型选择') | |
with gr.Tabs(elem_id="sadtalker_checkbox"): | |
with gr.TabItem('Settings'): | |
with gr.Accordion("Advanced Settings", | |
open=False): | |
gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials") | |
with gr.Column(variant='panel'): | |
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width | |
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width | |
with gr.Row(): | |
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) # | |
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) # | |
blink_every = gr.Checkbox(label="use eye blink", value=True) | |
with gr.Row(): | |
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") # | |
preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?") | |
with gr.Row(): | |
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)") | |
facerender = gr.Radio(['facevid2vid', 'PIRender'], value='facevid2vid', label='facerender', info="which face render?") | |
with gr.Row(): | |
batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1) | |
fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20) | |
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)") | |
with gr.Tabs(elem_id="sadtalker_genearted"): | |
gen_video = gr.Video(label="Generated video", format="mp4",scale=0.8) | |
submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary') | |
submit.click( | |
fn=Talker_response_img, | |
inputs=[question_audio, | |
method, | |
input_text, | |
voice, rate, volume, pitch, | |
source_image, | |
preprocess_type, | |
is_still_mode, | |
enhancer, | |
batch_size, | |
size_of_image, | |
pose_style, | |
facerender, | |
exp_weight, | |
blink_every, | |
fps], | |
outputs=[gen_video] | |
) | |
with gr.Row(): | |
examples = [ | |
[ | |
'examples/source_image/full_body_2.png', | |
'crop', | |
False, | |
False | |
], | |
[ | |
'examples/source_image/full_body_1.png', | |
'crop', | |
False, | |
False | |
], | |
[ | |
'examples/source_image/full3.png', | |
'crop', | |
False, | |
False | |
], | |
[ | |
'examples/source_image/full4.jpeg', | |
'crop', | |
False, | |
False | |
], | |
[ | |
'examples/source_image/art_13.png', | |
'crop', | |
False, | |
False | |
], | |
[ | |
'examples/source_image/art_5.png', | |
'crop', | |
False, | |
False | |
], | |
] | |
gr.Examples(examples=examples, | |
fn=Talker_response, | |
inputs=[ | |
source_image, | |
preprocess_type, | |
is_still_mode, | |
enhancer], | |
outputs=[gen_video], | |
# cache_examples=True, | |
) | |
return inference | |
def app_vits(): | |
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference: | |
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 语音克隆")) | |
with gr.Row(equal_height=False): | |
with gr.Column(variant='panel'): | |
with gr.Tabs(elem_id="question_audio"): | |
with gr.TabItem('对话'): | |
with gr.Column(variant='panel'): | |
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话') | |
input_text = gr.Textbox(label="Input Text", lines=3) | |
voice, rate, volume, pitch, batch_size, character, method = voice_setting(["克隆声音", "克隆烟嗓音"] + tts.SUPPORTED_VOICE) | |
asr_text = gr.Button('语音识别(语音对话后点击)') | |
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text]) | |
with gr.Column(variant='panel'): | |
with gr.Tabs(): | |
with gr.TabItem('数字人问答'): | |
gen_video = gr.Video(label="Generated video", format="mp4", scale=1, autoplay=False) | |
video_button = gr.Button("提交", variant='primary') | |
video_button.click(fn=Talker_response,inputs=[question_audio, method, input_text, voice, rate, volume, pitch, batch_size, character],outputs=[gen_video]) | |
with gr.Row(): | |
with gr.Column(variant='panel'): | |
gr.Markdown("## Test Examples") | |
gr.Examples( | |
examples = [["如何应对压力", "男性角色", "SadTalker", "克隆烟嗓音"], ["北京有什么好玩的地方", "男性角色", "SadTalker", "克隆声音"]] + examples, | |
fn = Talker_response, | |
inputs = [input_text, character, method, voice], | |
) | |
return inference | |
if __name__ == "__main__": | |
# llm = LLM(mode='offline').init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf') | |
# llm = LLM(mode='offline').init_model('Gemini', 'gemini-pro', api_key = "your api key") | |
# llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat') | |
llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat') | |
try: | |
talker = SadTalker(lazy_load=True) | |
except Exception as e: | |
print("SadTalker Error: ", e) | |
# print("如果使用SadTalker,请先下载SadTalker模型") | |
gr.Warning("如果使用SadTalker,请先下载SadTalker模型") | |
try: | |
from TFG import Wav2Lip | |
wav2lip = Wav2Lip("checkpoints/wav2lip_gan.pth") | |
except Exception as e: | |
print("Wav2Lip Error: ", e) | |
print("如果使用Wav2Lip,请先下载Wav2Lip模型") | |
try: | |
from VITS import GPT_SoVITS | |
vits = GPT_SoVITS() | |
except Exception as e: | |
print("GPT-SoVITS Error: ", e) | |
print("如果使用VITS,请先下载GPT-SoVITS模型和安装环境") | |
try: | |
from ASR import FunASR | |
asr = FunASR() | |
except Exception as e: | |
print("ASR Error: ", e) | |
print("如果使用FunASR,请先下载FunASR模型和安装环境") | |
asr = WhisperASR('base') | |
tts = EdgeTTS() | |
gr.close_all() | |
demo_app = app() | |
demo_img = app_img() | |
demo_multi = app_multi() | |
demo_vits = app_vits() | |
demo = gr.TabbedInterface(interface_list = [demo_app, demo_img, demo_multi, demo_vits], | |
tab_names = ["文本/语音对话", "任意图片对话", "多轮GPT对话", "语音克隆数字人对话"], | |
title = "Linly-Talker WebUI") | |
demo.launch(server_name="127.0.0.1", # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0" | |
server_port=port, | |
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话 | |
ssl_certfile=ssl_certfile, | |
ssl_keyfile=ssl_keyfile, | |
ssl_verify=False, | |
debug=True, | |
) |