Spaces:
Running
Running
import numpy as np | |
import cv2, os, subprocess | |
from tqdm import tqdm | |
import torch | |
import platform | |
# import sys | |
# sys.path.append('..') | |
from src.models import Wav2Lip as wav2lip_mdoel | |
from src.utils import audio | |
import face_detection | |
class Wav2Lip: | |
def __init__(self, path = 'checkpoints/wav2lip.pth'): | |
self.fps = 25 | |
self.resize_factor = 1 | |
self.mel_step_size = 16 | |
self.static = False | |
self.img_size = 96 | |
self.face_det_batch_size = 2 | |
self.box = [-1, -1, -1, -1] | |
self.pads = [0, 10, 0, 0] | |
self.nosmooth = False | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.model = self.load_model(path) | |
def load_model(self, checkpoint_path): | |
model = wav2lip_mdoel() | |
print("Load checkpoint from: {}".format(checkpoint_path)) | |
if self.device == 'cuda': | |
checkpoint = torch.load(checkpoint_path) | |
else: | |
checkpoint = torch.load(checkpoint_path, | |
map_location=lambda storage, loc: storage) | |
s = checkpoint["state_dict"] | |
new_s = {} | |
for k, v in s.items(): | |
new_s[k.replace('module.', '')] = v | |
model.load_state_dict(new_s) | |
model = model.to(self.device) | |
return model.eval() | |
# def predict(self, face_path, audio_file, batch_size): | |
# if face_path.split('.')[1] in ['jpg', 'png', 'jpeg']: | |
# return self.predict_img(face_path, audio_file, batch_size) | |
# elif face_path.split('.')[1] == 'mp4': | |
# return self.predict_video(face_path, audio_file, batch_size) | |
# else: | |
# return None | |
def predict(self, face, audio_file, batch_size): | |
os.makedirs('results', exist_ok=True) | |
os.makedirs('temp', exist_ok=True) | |
frame = cv2.imread(face) | |
if self.resize_factor > 1: | |
frame = cv2.resize(frame, (frame.shape[1]//self.resize_factor, frame.shape[0]//self.resize_factor)) | |
full_frames = [frame] | |
wav = audio.load_wav(audio_file, 16000) | |
mel = audio.melspectrogram(wav) | |
mel_chunks = [] | |
mel_idx_multiplier = 80./self.fps | |
i = 0 | |
while 1: | |
start_idx = int(i * mel_idx_multiplier) | |
if start_idx + self.mel_step_size > len(mel[0]): | |
mel_chunks.append(mel[:, len(mel[0]) - self.mel_step_size:]) | |
break | |
mel_chunks.append(mel[:, start_idx : start_idx + self.mel_step_size]) | |
i += 1 | |
print("Length of mel chunks: {}".format(len(mel_chunks))) | |
full_frames = full_frames[:len(mel_chunks)] | |
batch_size = batch_size | |
gen = self.datagen(full_frames.copy(), mel_chunks, batch_size) | |
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, | |
total=int(np.ceil(float(len(mel_chunks))/batch_size)))): | |
if i == 0: | |
frame_h, frame_w = full_frames[0].shape[:-1] | |
out = cv2.VideoWriter('temp/result.avi', | |
cv2.VideoWriter_fourcc(*'DIVX'), self.fps, (frame_w, frame_h)) | |
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(self.device) | |
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(self.device) | |
with torch.no_grad(): | |
pred = self.model(mel_batch, img_batch) | |
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. | |
for p, f, c in zip(pred, frames, coords): | |
y1, y2, x1, x2 = c | |
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) | |
f[y1:y2, x1:x2] = p | |
out.write(f) | |
out.release() | |
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_file, 'temp/result.avi', 'results/example_answer.mp4') | |
subprocess.call(command, shell=platform.system() != 'Windows') | |
return 'results/example_answer.mp4' | |
def datagen(self, frames, mels, batch_size): | |
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
if self.box[0] == -1: | |
if not self.static: | |
face_det_results = self.face_detect(frames) # BGR2RGB for CNN face detection | |
else: | |
face_det_results = self.face_detect([frames[0]]) | |
else: | |
print('Using the specified bounding box instead of face detection...') | |
y1, y2, x1, x2 = self.box | |
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] | |
for i, m in enumerate(mels): | |
idx = 0 if self.static else i%len(frames) | |
frame_to_save = frames[idx].copy() | |
face, coords = face_det_results[idx].copy() | |
face = cv2.resize(face, (self.img_size, self.img_size)) | |
img_batch.append(face) | |
mel_batch.append(m) | |
frame_batch.append(frame_to_save) | |
coords_batch.append(coords) | |
if len(img_batch) >= batch_size: | |
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
img_masked = img_batch.copy() | |
img_masked[:, self.img_size//2:] = 0 | |
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
yield img_batch, mel_batch, frame_batch, coords_batch | |
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] | |
if len(img_batch) > 0: | |
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) | |
img_masked = img_batch.copy() | |
img_masked[:, self.img_size//2:] = 0 | |
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. | |
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) | |
yield img_batch, mel_batch, frame_batch, coords_batch | |
def face_detect(self, images): | |
try: | |
detector = face_detection.FaceAlignment(face_detection.LandmarksType.TWO_D, | |
flip_input=False, device=self.device) | |
except: | |
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, | |
flip_input=False, device=self.device) | |
batch_size = self.face_det_batch_size | |
while 1: | |
predictions = [] | |
try: | |
for i in tqdm(range(0, len(images), batch_size)): | |
# img_batch = torch.tensor(np.array(images[i:i + batch_size]), device=self.device) | |
# img_batch = img_batch.permute(0, 3, 1, 2) | |
# print(img_batch.shape, type(img_batch)) | |
# predictions.extend(detector.get_landmarks_from_batch(img_batch)) | |
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) | |
except Exception as e: | |
print("Error in face detection: {}".format(e)) | |
if batch_size == 1: | |
raise RuntimeError('Image too big to run face detection on GPU. Please use the resize_factor argument') | |
batch_size //= 2 | |
print('Recovering from OOM error; New batch size: {}'.format(batch_size)) | |
continue | |
break | |
results = [] | |
pady1, pady2, padx1, padx2 = self.pads | |
for rect, image in zip(predictions, images): | |
if rect is None: | |
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. | |
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') | |
y1 = max(0, rect[1] - pady1) | |
y2 = min(image.shape[0], rect[3] + pady2) | |
x1 = max(0, rect[0] - padx1) | |
x2 = min(image.shape[1], rect[2] + padx2) | |
results.append([x1, y1, x2, y2]) | |
boxes = np.array(results) | |
if not self.nosmooth: boxes = self.get_smoothened_boxes(boxes, T=5) | |
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] | |
del detector | |
return results | |
def get_smoothened_boxes(self, boxes, T): | |
for i in range(len(boxes)): | |
if i + T > len(boxes): | |
window = boxes[len(boxes) - T:] | |
else: | |
window = boxes[i : i + T] | |
boxes[i] = np.mean(window, axis=0) | |
return boxes | |
if __name__ == '__main__': | |
wav2lip = Wav2Lip('../checkpoints/wav2lip.pth') | |
wav2lip.predict('../example.png', '../answer.wav', 2) |