Spaces:
Running
Running
import os | |
import random | |
import gradio as gr | |
from zhconv import convert | |
from LLM import LLM | |
from ASR import WhisperASR | |
from TFG import SadTalker | |
from TTS import EdgeTTS | |
from src.cost_time import calculate_time | |
from configs import * | |
os.environ["GRADIO_TEMP_DIR"]= './temp' | |
description = """<p style="text-align: center; font-weight: bold;"> | |
<span style="font-size: 28px;">Linly 智能对话系统 (Linly-Talker)</span> | |
<br> | |
<span style="font-size: 18px;" id="paper-info"> | |
[<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>] | |
[<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>] | |
[<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>] | |
[<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>] | |
</span> | |
<br> | |
<span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span> | |
</p> | |
""" | |
# 设定默认参数值,可修改 | |
source_image = r'example.png' | |
blink_every = True | |
size_of_image = 256 | |
preprocess_type = 'crop' | |
facerender = 'facevid2vid' | |
enhancer = False | |
is_still_mode = False | |
pic_path = "./inputs/girl.png" | |
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png" | |
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat" | |
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663]) | |
exp_weight = 1 | |
use_ref_video = False | |
ref_video = None | |
ref_info = 'pose' | |
use_idle_mode = False | |
length_of_audio = 5 | |
def Asr(audio): | |
try: | |
question = asr.transcribe(audio) | |
question = convert(question, 'zh-cn') | |
except Exception as e: | |
print("ASR Error: ", e) | |
question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可' | |
gr.Warning(question) | |
return question | |
def LLM_response(question, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0): | |
answer = llm.generate(question) | |
print(answer) | |
try: | |
tts.predict(answer, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt') | |
except: | |
os.system(f'edge-tts --text "{answer}" --voice {voice} --write-media answer.wav') | |
return 'answer.wav', 'answer.vtt', answer | |
def Talker_response(text, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0, batch_size = 2): | |
voice = 'zh-CN-XiaoxiaoNeural' if voice not in tts.SUPPORTED_VOICE else voice | |
# print(voice , rate , volume , pitch) | |
driven_audio, driven_vtt, _ = LLM_response(text, voice, rate, volume, pitch) | |
pose_style = random.randint(0, 45) | |
video = talker.test(pic_path, | |
crop_pic_path, | |
first_coeff_path, | |
crop_info, | |
source_image, | |
driven_audio, | |
preprocess_type, | |
is_still_mode, | |
enhancer, | |
batch_size, | |
size_of_image, | |
pose_style, | |
facerender, | |
exp_weight, | |
use_ref_video, | |
ref_video, | |
ref_info, | |
use_idle_mode, | |
length_of_audio, | |
blink_every, | |
fps=20) | |
if driven_vtt: | |
return video, driven_vtt | |
else: | |
return video | |
def main(): | |
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference: | |
gr.HTML(description) | |
with gr.Row(equal_height=False): | |
with gr.Column(variant='panel'): | |
with gr.Tabs(elem_id="question_audio"): | |
with gr.TabItem('对话'): | |
with gr.Column(variant='panel'): | |
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话') | |
input_text = gr.Textbox(label="Input Text", lines=3) | |
with gr.Accordion("Advanced Settings(高级设置语音参数) ", | |
open=False): | |
voice = gr.Dropdown(tts.SUPPORTED_VOICE, | |
value='zh-CN-XiaoxiaoNeural', | |
label="Voice") | |
rate = gr.Slider(minimum=-100, | |
maximum=100, | |
value=0, | |
step=1.0, | |
label='Rate') | |
volume = gr.Slider(minimum=0, | |
maximum=100, | |
value=100, | |
step=1, | |
label='Volume') | |
pitch = gr.Slider(minimum=-100, | |
maximum=100, | |
value=0, | |
step=1, | |
label='Pitch') | |
batch_size = gr.Slider(minimum=1, | |
maximum=10, | |
value=2, | |
step=1, | |
label='Talker Batch size') | |
asr_text = gr.Button('语音识别(语音对话后点击)') | |
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text]) | |
# with gr.Column(variant='panel'): | |
# input_text = gr.Textbox(label="Input Text", lines=3) | |
# text_button = gr.Button("文字对话", variant='primary') | |
with gr.Column(variant='panel'): | |
with gr.Tabs(): | |
with gr.TabItem('数字人问答'): | |
gen_video = gr.Video(label="Generated video", format="mp4", scale=1, autoplay=True) | |
video_button = gr.Button("提交", variant='primary') | |
video_button.click(fn=Talker_response,inputs=[input_text,voice, rate, volume, pitch, batch_size],outputs=[gen_video]) | |
with gr.Row(): | |
with gr.Column(variant='panel'): | |
gr.Markdown("## Text Examples") | |
examples = ['应对压力最有效的方法是什么?', | |
'如何进行时间管理?', | |
'为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?', | |
'近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?', | |
'三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?', | |
'撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。', | |
'翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.', | |
] | |
gr.Examples( | |
examples = examples, | |
fn = Talker_response, | |
inputs = [input_text], | |
outputs=[gen_video], | |
# cache_examples = True, | |
) | |
return inference | |
if __name__ == "__main__": | |
# llm = LLM(mode='offline').init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf') | |
# llm = LLM(mode='offline').init_model('Gemini', 'gemini-pro', api_key = "your api key") | |
# llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat') | |
llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat') | |
talker = SadTalker(lazy_load=True) | |
asr = WhisperASR('base') | |
tts = EdgeTTS() | |
gr.close_all() | |
demo = main() | |
demo.queue() | |
# demo.launch() | |
demo.launch(server_name=ip, # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0" | |
server_port=port, | |
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话 | |
ssl_certfile=ssl_certfile, | |
ssl_keyfile=ssl_keyfile, | |
ssl_verify=False, | |
debug=True) |