File size: 4,111 Bytes
1f8bf61
 
 
 
 
 
 
 
 
 
f3bc742
 
1f8bf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import sys
from threading import Thread

import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList

device = "cuda:0" if torch.cuda.is_available() else "cpu"

model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True)

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [151645]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

@torch.no_grad()
def response(message, history, image):
    stop = StopOnTokens()

    messages = [{"role": "system", "content": "You are a helpful assistant."}]

    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})

    if len(messages) == 1:
        message = f" <image>{message}"

    messages.append({"role": "user", "content": message})

    model_inputs = processor.tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt"
    )

    image = (
            processor.feature_extractor(image)
            .unsqueeze(0)
    )

    attention_mask = torch.ones(
        1, model_inputs.shape[1] + processor.num_image_latents - 1
    )
    
    model_inputs = {
        "input_ids": model_inputs,
        "images": image,
        "attention_mask": attention_mask
    }

    model_inputs = {k: v.to(device) for k, v in model_inputs.items()}

    streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        stopping_criteria=StoppingCriteriaList([stop])
        )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    history.append([message, ""])
    partial_response = ""
    for new_token in streamer:
        partial_response += new_token
        history[-1][1] = partial_response
        yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True)


with gr.Blocks() as demo:
    with gr.Row():
        image = gr.Image(type="pil")

        with gr.Column():
            chat = gr.Chatbot(show_label=False)
            message = gr.Textbox(interactive=True, show_label=False, container=False)

            with gr.Row():
                gr.ClearButton([chat, message])
                stop = gr.Button(value="Stop", variant="stop", visible=False)
                submit = gr.Button(value="Submit", variant="primary")

    with gr.Row():
        gr.Examples(
            [
                ["images/interior.jpg", "Describe the image accurately."],
                ["images/cat.jpg", "Describe the image in three sentences."],
                ["images/child.jpg", "Describe the image in one sentence."],
            ],
            [image, message],
            label="Captioning"
        )
        gr.Examples(
            [
                ["images/scream.jpg", "What is the main emotion of this image?"],
                ["images/louvre.jpg", "Where is this landmark located?"],
                ["images/three_people.jpg", "What are these people doing?"]
            ],
            [image, message],
            label="VQA"
        )

    response_handler = (
        response,
        [message, chat, image],
        [chat, submit, stop]
    )
    postresponse_handler = (
        lambda: (gr.Button(visible=False), gr.Button(visible=True)),
        None,
        [stop, submit]
    )

    event1 = message.submit(*response_handler)
    event1.then(*postresponse_handler)
    event2 = submit.click(*response_handler)
    event2.then(*postresponse_handler)

    stop.click(None, None, None, cancels=[event1, event2])

demo.queue()
demo.launch()