usmanyousaf's picture
Update app.py
bdb0427 verified
raw
history blame
4.39 kB
import os
from fastapi import FastAPI, Request, Form, File, UploadFile
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from groq import Groq
import io
# Set up the Groq client
os.environ["GROQ_API_KEY"] = "your_groq_api_key_here"
client = Groq(api_key=os.environ["GROQ_API_KEY"])
# Initialize FastAPI app and template engine
app = FastAPI()
templates = Jinja2Templates(directory="templates")
@app.get("/", response_class=HTMLResponse)
async def index(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/transcribe")
async def transcribe_audio(audio_data: UploadFile = File(...), language: str = Form(...)):
try:
audio_content = await audio_data.read()
# Transcribe the audio based on the selected language
transcription = client.audio.transcriptions.create(
file=(audio_data.filename, audio_content),
model="whisper-large-v3",
prompt="Transcribe the audio accurately based on the selected language.",
response_format="text",
language=language,
)
return JSONResponse(content={'transcription': transcription})
except Exception as e:
return JSONResponse(status_code=500, content={'error': str(e)})
@app.post("/check_grammar")
async def check_grammar(transcription: str = Form(...), language: str = Form(...)):
if not transcription or not language:
return JSONResponse(status_code=400, content={'error': 'Missing transcription or language selection'})
try:
# Grammar check
grammar_prompt = (
f"Briefly check the grammar of the following text in {language}: {transcription}. "
"Identify any word that does not belong to the selected language and flag it. "
"Based on the number of incorrect words also check the grammar deeply and carefully. "
"Provide a score from 1 to 10 based on the grammar accuracy, reducing points for incorrect words and make sure to output the score on a new line after two line breaks like 'SCORE='."
)
grammar_check_response = client.chat.completions.create(
model="llama3-groq-70b-8192-tool-use-preview",
messages=[{"role": "user", "content": grammar_prompt}]
)
grammar_feedback = grammar_check_response.choices[0].message.content.strip()
# Vocabulary check
vocabulary_prompt = (
f"Check the vocabulary accuracy of the following text in {language}: {transcription}. "
"Identify any word that does not belong to the selected language and flag it. "
"Based on the number of incorrect words also check the grammar deeply and carefully. "
"Provide a score from 1 to 10 based on the vocabulary accuracy reducing points for incorrect words and make sure to output the score on a new line after two line breaks like 'SCORE='."
)
vocabulary_check_response = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[{"role": "user", "content": vocabulary_prompt}]
)
vocabulary_feedback = vocabulary_check_response.choices[0].message.content.strip()
# Calculate scores
grammar_score = calculate_score(grammar_feedback)
vocabulary_score = calculate_score(vocabulary_feedback)
return JSONResponse(content={
'grammar_feedback': grammar_feedback,
'vocabulary_feedback': vocabulary_feedback,
'grammar_score': grammar_score,
'vocabulary_score': vocabulary_score
})
except Exception as e:
return JSONResponse(status_code=500, content={'error': str(e)})
def calculate_score(feedback: str) -> int:
"""
Calculate score based on feedback content.
This function searches for the keyword 'SCORE=' or similar variations
(SCORE:, score:, etc.) and extracts the score value.
"""
import re
match = re.search(r'(SCORE=|score=|SCORE:|score:|SCORE = )\s*(\d+)', feedback)
if match:
return int(match.group(2))
return 0 # Return default score of 0 if no score is found
# Run the FastAPI app (only needed for local development)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)