import os from fastapi import FastAPI, Request, Form, File, UploadFile from fastapi.responses import HTMLResponse, JSONResponse from fastapi.templating import Jinja2Templates from groq import Groq import io # Set up the Groq client os.environ["GROQ_API_KEY"] = "your_groq_api_key_here" client = Groq(api_key=os.environ["GROQ_API_KEY"]) # Initialize FastAPI app and template engine app = FastAPI() templates = Jinja2Templates(directory="templates") @app.get("/", response_class=HTMLResponse) async def index(request: Request): return templates.TemplateResponse("index.html", {"request": request}) @app.post("/transcribe") async def transcribe_audio(audio_data: UploadFile = File(...), language: str = Form(...)): try: audio_content = await audio_data.read() # Transcribe the audio based on the selected language transcription = client.audio.transcriptions.create( file=(audio_data.filename, audio_content), model="whisper-large-v3", prompt="Transcribe the audio accurately based on the selected language.", response_format="text", language=language, ) return JSONResponse(content={'transcription': transcription}) except Exception as e: return JSONResponse(status_code=500, content={'error': str(e)}) @app.post("/check_grammar") async def check_grammar(transcription: str = Form(...), language: str = Form(...)): if not transcription or not language: return JSONResponse(status_code=400, content={'error': 'Missing transcription or language selection'}) try: # Grammar check grammar_prompt = ( f"Briefly check the grammar of the following text in {language}: {transcription}. " "Identify any word that does not belong to the selected language and flag it. " "Based on the number of incorrect words also check the grammar deeply and carefully. " "Provide a score from 1 to 10 based on the grammar accuracy, reducing points for incorrect words and make sure to output the score on a new line after two line breaks like 'SCORE='." ) grammar_check_response = client.chat.completions.create( model="llama3-groq-70b-8192-tool-use-preview", messages=[{"role": "user", "content": grammar_prompt}] ) grammar_feedback = grammar_check_response.choices[0].message.content.strip() # Vocabulary check vocabulary_prompt = ( f"Check the vocabulary accuracy of the following text in {language}: {transcription}. " "Identify any word that does not belong to the selected language and flag it. " "Based on the number of incorrect words also check the grammar deeply and carefully. " "Provide a score from 1 to 10 based on the vocabulary accuracy reducing points for incorrect words and make sure to output the score on a new line after two line breaks like 'SCORE='." ) vocabulary_check_response = client.chat.completions.create( model="llama-3.1-70b-versatile", messages=[{"role": "user", "content": vocabulary_prompt}] ) vocabulary_feedback = vocabulary_check_response.choices[0].message.content.strip() # Calculate scores grammar_score = calculate_score(grammar_feedback) vocabulary_score = calculate_score(vocabulary_feedback) return JSONResponse(content={ 'grammar_feedback': grammar_feedback, 'vocabulary_feedback': vocabulary_feedback, 'grammar_score': grammar_score, 'vocabulary_score': vocabulary_score }) except Exception as e: return JSONResponse(status_code=500, content={'error': str(e)}) def calculate_score(feedback: str) -> int: """ Calculate score based on feedback content. This function searches for the keyword 'SCORE=' or similar variations (SCORE:, score:, etc.) and extracts the score value. """ import re match = re.search(r'(SCORE=|score=|SCORE:|score:|SCORE = )\s*(\d+)', feedback) if match: return int(match.group(2)) return 0 # Return default score of 0 if no score is found # Run the FastAPI app (only needed for local development) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)