import os import torch import gc import shutil import streamlit as st from PIL import Image from diffusers import DiffusionPipeline, AutoencoderKL vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights("./lora-trained-thumbs-up-pw-0.5-steps-800") pipe.fuse_lora(lora_scale=1.0) pipe.save_pretrained("temp_model") del pipe gc.collect() torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained( "temp_model", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights("./lora-trained-thumbs-up-pw-0.5-steps-800-uttam-pw-0.5-steps-1600") _ = pipe.to("cuda") prompt = st.text_area("Enter the prompt!") image = pipe(prompt=prompt, num_inference_steps=25, num_images_per_prompt=1)[:] shutil.rmtree("temp_model", ignore_errors=True) st.image(image)