Spaces:
Runtime error
Runtime error
File size: 5,130 Bytes
6650ee4 ccf7d04 7055307 6650ee4 0d2d09d 6650ee4 7055307 3c305fd 7055307 3c305fd 6650ee4 5d73a55 7055307 ccf7d04 6650ee4 7055307 6650ee4 0d2d09d 6650ee4 ccf7d04 6650ee4 7055307 5d73a55 7055307 6650ee4 7055307 6650ee4 5d73a55 6650ee4 5d73a55 6650ee4 5d73a55 7055307 6650ee4 5d73a55 6650ee4 5d73a55 b9e1d94 5d73a55 b9e1d94 5d73a55 7055307 b9e1d94 7055307 6650ee4 5d73a55 6650ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
retrieve_results = 10
generate_kwargs = dict(
temperature = None,
max_new_tokens = 512,
top_p = None,
do_sample = False,
)
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
try:
gr.Info("Setting up retriever, please wait...")
rag_initial_output = RAG.search("what is Mistral?", k = 1)
gr.Info("Retriever working successfully!")
except:
gr.Warning("Retriever not working!")
mark_text = '# 🔍 Search Results\n'
header_text = "# ArXivCS RAG \n"
try:
with open("README.md", "r") as f:
mdfile = f.read()
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
match = re.search(date_pattern, mdfile)
date = match.group().split(': ')[1]
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
header_text += f'Index Last Updated: {formatted_date}\n'
except:
pass
with open("sample_outputs.json", "r") as f:
sample_outputs = json.load(f)
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']
def rag_cleaner(inp):
rank = inp['rank']
title = inp['document_metadata']['title']
content = inp['content']
return f"{rank}. <b> {title} </b> \n Abstract: {content}"
def get_prompt_text(question, context, formatted = True):
if formatted:
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer what the question. Cite the titles of your sources when answering."
message = f"Question: {question}"
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> "
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
def get_references(question, retriever, k = retrieve_results):
rag_out = retriever.search(query=question, k=k)
return rag_out
def get_rag(message):
return get_references(message, RAG)
with gr.Blocks(theme = gr.themes.Soft()) as demo:
header = gr.Markdown(header_text)
with gr.Group():
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
with gr.Accordion("Advanced Settings", open=False):
with gr.Row(equal_height = True):
llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results to sent as context")
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
input = gr.Textbox(show_label = False, visible = False)
gr_md = gr.Markdown(mark_text + md_text_initial)
def update_with_rag_md(message, llm_results_use = 5):
rag_out = get_rag(message)
md_text_updated = mark_text
for i in range(retrieve_results):
rag_answer = rag_out[i]
title = rag_answer['document_metadata']['title'].replace('\n','')
#score = round(rag_answer['score'], 2)
date = rag_answer['document_metadata']['_time']
paper_title = f'''### {date} | [{title}](https://arxiv.org/abs/{rag_answer['document_id']}) | [⬇️](https://arxiv.org/pdf/{rag_answer['document_id']})\n'''
paper_abs = rag_answer['content']
authors = rag_answer['document_metadata']['authors'].replace('\n','')
authors_formatted = f'*{authors}*' + ' \n\n'
md_text_updated += paper_title + authors_formatted + paper_abs + '\n---------------\n'+ '\n'
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use]))
return md_text_updated, prompt
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
model_disabled_text = "LLM Model is disabled"
output = ""
if llm_model_picked == 'None':
for out in model_disabled_text:
output += out
yield output
return output
client = InferenceClient(llm_model_picked)
#output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
#output = output.lstrip(' \n') if output.lstrip().startswith('\n') else output
for response in stream:
output += response.token.text
yield output
return output
#return gr.Textbox(output, visible = True)
msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model], output_text)
demo.launch(debug = True)
|