bishmoy commited on
Commit
2e45345
·
verified ·
1 Parent(s): 19f082d

added gemma

Browse files
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -9,6 +9,7 @@ import json
9
 
10
  retrieve_results = 10
11
  show_examples = False
 
12
 
13
  generate_kwargs = dict(
14
  temperature = None,
@@ -56,11 +57,16 @@ def rag_cleaner(inp):
56
  date = inp['document_metadata']['_time']
57
  return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
58
 
59
- def get_prompt_text(question, context, formatted = True):
60
  if formatted:
61
  sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
62
  message = f"Question: {question}"
63
- return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> "
 
 
 
 
 
64
  return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
65
 
66
  def get_references(question, retriever, k = retrieve_results):
@@ -76,7 +82,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
76
  msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
77
  with gr.Accordion("Advanced Settings", open=False):
78
  with gr.Row(equal_height = True):
79
- llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
80
  llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
81
  stream_results = gr.Checkbox(value = True, label = "Stream output")
82
 
@@ -84,7 +90,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
84
  input = gr.Textbox(show_label = False, visible = False)
85
  gr_md = gr.Markdown(mark_text + md_text_initial)
86
 
87
- def update_with_rag_md(message, llm_results_use = 5):
88
  rag_out = get_rag(message)
89
  md_text_updated = mark_text
90
  for i in range(retrieve_results):
@@ -99,7 +105,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
99
  authors_formatted = f'*{authors}*' + ' \n\n'
100
 
101
  md_text_updated += paper_title + authors_formatted + paper_abs + '\n---------------\n'+ '\n'
102
- prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use]))
103
  return md_text_updated, prompt
104
 
105
  def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
@@ -131,6 +137,6 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
131
  return stream
132
 
133
 
134
- msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
135
 
136
  demo.queue(default_concurrency_limit=10).launch()
 
9
 
10
  retrieve_results = 10
11
  show_examples = False
12
+ llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
13
 
14
  generate_kwargs = dict(
15
  temperature = None,
 
57
  date = inp['document_metadata']['_time']
58
  return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
59
 
60
+ def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
61
  if formatted:
62
  sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
63
  message = f"Question: {question}"
64
+ if 'mistralai' in llm_model_picked:
65
+ return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
66
+
67
+ elif 'gemma' in llm_model_picked:
68
+ return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
69
+
70
  return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
71
 
72
  def get_references(question, retriever, k = retrieve_results):
 
82
  msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
83
  with gr.Accordion("Advanced Settings", open=False):
84
  with gr.Row(equal_height = True):
85
+ llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
86
  llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
87
  stream_results = gr.Checkbox(value = True, label = "Stream output")
88
 
 
90
  input = gr.Textbox(show_label = False, visible = False)
91
  gr_md = gr.Markdown(mark_text + md_text_initial)
92
 
93
+ def update_with_rag_md(message, llm_results_use = 5, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
94
  rag_out = get_rag(message)
95
  md_text_updated = mark_text
96
  for i in range(retrieve_results):
 
105
  authors_formatted = f'*{authors}*' + ' \n\n'
106
 
107
  md_text_updated += paper_title + authors_formatted + paper_abs + '\n---------------\n'+ '\n'
108
+ prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use]), llm_model_picked = llm_model_picked)
109
  return md_text_updated, prompt
110
 
111
  def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
 
137
  return stream
138
 
139
 
140
+ msg.submit(update_with_rag_md, [msg, llm_results, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
141
 
142
  demo.queue(default_concurrency_limit=10).launch()