import streamlit as st import pandas as pd import requests import os from io import StringIO import datetime # Set page configuration st.set_page_config(page_title="Predict", page_icon="🔮", layout="wide") st.title("Predict Sepsis") def select_model(): col1, col2 = st.columns(2) with col1: choice = st.selectbox('Select a model', options=['xgboost', 'random_forest'], key='select_model') with col2: pass # if st.session_state['selected_model'] == 'Xgboost': # pipeline = xgboost_pipeline() # else: # pipeline = load_random_forest_pipeline() # encoder = joblib.load('models/encoder.joblib') return choice def make_prediction(): selected_model = st.session_state['select_model'] age = st.session_state['age'] insurance = 1 if st.session_state['insurance'] == 'Yes' else 0 m11 = st.session_state['m11'] pr = st.session_state['pr'] prg = st.session_state['prg'] ts = st.session_state['ts'] pl = st.session_state['pl'] sk = st.session_state['sk'] bd2 = st.session_state['bd2'] base_url = 'https://gabcares-team-curium.hf.space/' url = base_url + f"{ 'xgboost_prediction' if selected_model=='xgboost' else 'random_forest_prediction'}" data = {'PRG': prg, 'PL': pl, 'PR': pr,'SK': sk, 'TS': ts, 'M11': m11, 'BD2': bd2, 'Age': age, 'Insurance': insurance} # Send POST request with JSON data using the json parameter response_status = requests.get(base_url) if (response_status.status_code == 200): response = requests.post(url, json=data,timeout=30) pred_prob = (response.json()['result']) prediction = pred_prob['prediction'] probability = pred_prob['probability'] st.session_state['prediction'] = prediction st.session_state['probability'] = probability else: st.write('Unable to connect to the server.') # Creating the form def display_form(): select_model() with st.form('input_features'): col1, col2 = st.columns(2) with col1: st.write('### Patient Demographics') age = st.number_input('Age', min_value=0, max_value=100, step=1, key = 'age') insurance = st.selectbox('Insurance', options = ['Yes', 'No'], key = 'insurance') st.write('### Vital Signs') m11 = st.number_input('BMI', min_value=10.0, format="%.2f",step = 1.00, key = 'm11') pr = st.number_input('Blood Pressure', min_value=10.0, format="%.2f",step = 1.00, key = 'pr') prg = st.number_input('PRG(plasma glucose)', min_value=10.0, format="%.2f",step = 1.00, key = 'prg') with col2: st.write('### Blood Work') pl = st.number_input('PL(Blood Work Result 1)', min_value=10.0, format="%.2f",step = 1.00, key = 'pl') sk = st.number_input('SK(Blood Work Result 2)', min_value=10.0, format="%.2f",step = 1.00, key = 'sk') ts = st.number_input('TS(Blood Work Result 3)', min_value=10.0, format="%.2f",step = 1.00, key = 'ts') bd2 = st.number_input('BD2(Blood Work Result 4)', min_value=10.0, format="%.2f",step = 1.00, key = 'bd2') st.form_submit_button('Submit', on_click=make_prediction) if __name__ == '__main__': display_form() final_prediction = st.session_state.get('prediction') final_probability = st.session_state.get('probability') if final_prediction is None: st.write('Predictions show here!') st.divider() else: if final_prediction.lower() == 'positive': st.markdown(f'### Patient is likely to develop sepsis😞.') st.markdown(f'## Probability: {final_probability:.2f}%') else: # st.markdown(f'## Sepsis: {final_prediction}') st.markdown(f'### Patient is unlikely to develop sepsis😊.') st.markdown(f'## Probability: {final_probability:.2f}%')