abdulmatinomotoso's picture
Update app.py
5273dc1
raw
history blame
1.58 kB
#importing the necessary libraries
import gradio as gr
import numpy as np
import pandas as pd
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
#Defining the labels of the models
labels = ['entertainment', 'science', 'health', 'politics', 'sport','world', 'tech', 'business']
#Defining the models and tokenuzer
model_name = 'valurank/finetuned-distilbert-news-article-categorization'
model = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token='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')
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token='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')
#Reading in the text file
def read_in_text(url):
with open(url, 'r') as file:
article = file.read()
return article
#Defining a function to get the category of the news article
def get_category(file):
text = read_in_text(file.name)
input_tensor = tokenizer.encode(text, return_tensors='pt', truncation=True)
logits = model(input_tensor).logits
softmax = torch.nn.Softmax(dim=1)
probs = softmax(logits)[0]
probs = probs.cpu().detach().numpy()
max_index = np.argmax(probs)
emotion = labels[max_index]
return emotion
#Creating the interface for the radio app
demo = gr.Interface(get_category, inputs=gr.inputs.File(label='Upload your .txt file here'),
outputs = 'text',
title='News Article Categorization')
#Launching the gradio app
if __name__ == '__main__':
demo.launch(debug=True)