abdulmatinomotoso's picture
Update app.py
c078293 verified
raw
history blame
1.99 kB
#importing the necessary libraries
import gradio as gr
import numpy as np
import pandas as pd
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
#Defining the labels of the models
labels = ["business", "science","health", "world", "sport", "politics", "entertainment", "tech"]
#Defining the models and tokenuzer
model_name = "valurank/finetuned-distilbert-news-article-categorization"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
"""
#Reading in the text file
def read_in_text(url):
with open(url, 'r') as file:
article = file.read()
return article
"""
def clean_text(raw_text):
text = raw_text.encode("ascii", errors="ignore").decode(
"ascii"
) # remove non-ascii, Chinese characters
text = re.sub(r"\n", " ", text)
text = re.sub(r"\n\n", " ", text)
text = re.sub(r"\t", " ", text)
text = text.strip(" ")
text = re.sub(
" +", " ", text
).strip() # get rid of multiple spaces and replace with a single
text = re.sub(r"Date\s\d{1,2}\/\d{1,2}\/\d{4}", "", text) #remove date
text = re.sub(r"\d{1,2}:\d{2}\s[A-Z]+\s[A-Z]+", "", text) #remove time
return text
#Defining a function to get the category of the news article
def get_category(text):
text = clean_text(text)
input_tensor = tokenizer.encode(text, return_tensors="pt", truncation=True)
logits = model(input_tensor).logits
softmax = torch.nn.Softmax(dim=1)
probs = softmax(logits)[0]
probs = probs.cpu().detach().numpy()
max_index = np.argmax(probs)
emotion = labels[max_index]
return emotion
#Creating the interface for the radio app
demo = gr.Interface(get_category, inputs=gr.Textbox(label="Drop your articles here"),
outputs = "text",
title="News Article Categorization")
#Launching the gradio app
if __name__ == "__main__":
demo.launch(debug=True)