Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -20,19 +20,29 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
20 |
|
21 |
HfFolder.save_token(st.secrets["hf-auth-token"])
|
22 |
|
23 |
-
# Load KeyBert Model
|
24 |
-
tmp_model = SentenceTransformer('valurank/MiniLM-L6-Keyword-Extraction', use_auth_token=True)
|
25 |
-
kw_extractor = KeyBERT(tmp_model)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
def get_keybert_results_with_vectorizer(text, number_of_results=20):
|
33 |
keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results)
|
34 |
return keywords
|
35 |
|
|
|
|
|
36 |
def t5_paraphraser(text, number_of_results=5):
|
37 |
text = "paraphrase: " + text + " </s>"
|
38 |
max_len = 2048
|
@@ -56,9 +66,9 @@ def t5_paraphraser(text, number_of_results=5):
|
|
56 |
|
57 |
return final_outputs
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
def extract_paraphrased_sentences(article):
|
63 |
|
64 |
start1 = time.time()
|
@@ -71,7 +81,7 @@ def extract_paraphrased_sentences(article):
|
|
71 |
|
72 |
|
73 |
start2 = time.time()
|
74 |
-
with st.spinner('
|
75 |
t5_paraphrasing_keywords = []
|
76 |
|
77 |
for sent in target_sentences:
|
@@ -81,7 +91,7 @@ def extract_paraphrased_sentences(article):
|
|
81 |
t5_keywords = [(word[0], word[1]) for s in t5_keywords for word in s]
|
82 |
|
83 |
t5_paraphrasing_keywords.extend(t5_keywords)
|
84 |
-
st.success('Keyword Extraction from
|
85 |
|
86 |
original_keywords_df = pd.DataFrame(original_keywords, columns=['Keyword', 'Score'])
|
87 |
|
@@ -105,9 +115,9 @@ if doc:
|
|
105 |
st.subheader('\nOriginal Keywords Extracted:\n\n')
|
106 |
st.dataframe(original_keywords_df)
|
107 |
|
|
|
|
|
|
|
108 |
st.subheader('\nT5 Keywords Extracted:\n\n')
|
109 |
st.dataframe(t5_keywords_df)
|
110 |
|
111 |
-
st.subheader('\nT5 Unique New Keywords Extracted:\n\n')
|
112 |
-
st.dataframe(unique_keywords_df)
|
113 |
-
|
|
|
20 |
|
21 |
HfFolder.save_token(st.secrets["hf-auth-token"])
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
+
@st.cache(allow_output_mutation=True)
|
25 |
+
def load_model():
|
26 |
+
# Load KeyBert Model
|
27 |
+
tmp_model = SentenceTransformer('valurank/MiniLM-L6-Keyword-Extraction', use_auth_token=True)
|
28 |
+
kw_extractor = KeyBERT(tmp_model)
|
29 |
+
|
30 |
+
# Load T5 for Paraphrasing
|
31 |
+
t5_model = T5ForConditionalGeneration.from_pretrained('valurank/t5-paraphraser', use_auth_token=True)
|
32 |
+
t5_tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
33 |
+
t5_model = t5_model.to(device)
|
34 |
+
return kw_extractor, t5_model, t5_tokenizer
|
35 |
+
|
36 |
+
kw_extractor, t5_model, t5_tokenizer = load_model()
|
37 |
+
|
38 |
|
39 |
+
@st.cache()
|
40 |
def get_keybert_results_with_vectorizer(text, number_of_results=20):
|
41 |
keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results)
|
42 |
return keywords
|
43 |
|
44 |
+
|
45 |
+
@st.cache()
|
46 |
def t5_paraphraser(text, number_of_results=5):
|
47 |
text = "paraphrase: " + text + " </s>"
|
48 |
max_len = 2048
|
|
|
66 |
|
67 |
return final_outputs
|
68 |
|
69 |
+
|
70 |
+
#### Extract Sentences with Keywords -> Paraphrase multiple versions -> Extract Keywords again
|
71 |
+
@st.cache()
|
72 |
def extract_paraphrased_sentences(article):
|
73 |
|
74 |
start1 = time.time()
|
|
|
81 |
|
82 |
|
83 |
start2 = time.time()
|
84 |
+
with st.spinner('Extracting Keywords from Paraphrased Target Sentences...'):
|
85 |
t5_paraphrasing_keywords = []
|
86 |
|
87 |
for sent in target_sentences:
|
|
|
91 |
t5_keywords = [(word[0], word[1]) for s in t5_keywords for word in s]
|
92 |
|
93 |
t5_paraphrasing_keywords.extend(t5_keywords)
|
94 |
+
st.success('Keyword Extraction from Paraphrased Target Sentences finished in {}'.format(time.time() - start2))
|
95 |
|
96 |
original_keywords_df = pd.DataFrame(original_keywords, columns=['Keyword', 'Score'])
|
97 |
|
|
|
115 |
st.subheader('\nOriginal Keywords Extracted:\n\n')
|
116 |
st.dataframe(original_keywords_df)
|
117 |
|
118 |
+
st.subheader('\nT5 Unique New Keywords Extracted:\n\n')
|
119 |
+
st.dataframe(unique_keywords_df)
|
120 |
+
|
121 |
st.subheader('\nT5 Keywords Extracted:\n\n')
|
122 |
st.dataframe(t5_keywords_df)
|
123 |
|
|
|
|
|
|