Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from keybert import KeyBERT
|
4 |
+
from keyphrase_vectorizers import KeyphraseCountVectorizer
|
5 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
6 |
+
|
7 |
+
import nltk
|
8 |
+
from nltk.tokenize import sent_tokenize
|
9 |
+
nltk.download('stopwords')
|
10 |
+
nltk.download('punkt')
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
# Load KeyBert Model
|
17 |
+
kw_extractor = KeyBERT('all-MiniLM-L6-v2')
|
18 |
+
#kw_extractor = KeyBERT('distilbert-base-nli-mean-tokens')
|
19 |
+
|
20 |
+
# Load T5 for Paraphrasing
|
21 |
+
t5_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
|
22 |
+
t5_tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
23 |
+
t5_model = t5_model.to(device)
|
24 |
+
|
25 |
+
|
26 |
+
doc = st.text_area("Enter a custom document")
|
27 |
+
|
28 |
+
def get_keybert_results_with_vectorizer(text, number_of_results=20):
|
29 |
+
keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results)
|
30 |
+
return keywords
|
31 |
+
|
32 |
+
def t5_paraphraser(text, number_of_results=10):
|
33 |
+
text = "paraphrase: " + text + " </s>"
|
34 |
+
max_len = 2048
|
35 |
+
encoding = t5_tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
|
36 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
37 |
+
|
38 |
+
beam_outputs = t5_model.generate(
|
39 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
40 |
+
do_sample=True,
|
41 |
+
max_length=2048,
|
42 |
+
top_k=50,
|
43 |
+
top_p=0.95,
|
44 |
+
early_stopping=True,
|
45 |
+
num_return_sequences=number_of_results
|
46 |
+
)
|
47 |
+
|
48 |
+
final_outputs =[]
|
49 |
+
for beam_output in beam_outputs:
|
50 |
+
sent = t5_tokenizer.decode(beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
51 |
+
final_outputs.append(sent)
|
52 |
+
|
53 |
+
return final_outputs
|
54 |
+
|
55 |
+
|
56 |
+
#### Extract Sentences with Keywords -> Paraphrase multiple versions -> Extract Keywords again
|
57 |
+
|
58 |
+
def extract_paraphrased_sentences(article):
|
59 |
+
|
60 |
+
original_keywords = [i[0] for i in get_keybert_results_with_vectorizer(article)]
|
61 |
+
|
62 |
+
article_sentences = sent_tokenize(article)
|
63 |
+
target_sentences = [sent for sent in article_sentences if any(kw[0] in sent for kw in original_keywords)]
|
64 |
+
|
65 |
+
start1 = time.time()
|
66 |
+
t5_paraphrasing_keywords = []
|
67 |
+
|
68 |
+
for sent in target_sentences:
|
69 |
+
### T5
|
70 |
+
t5_paraphrased = t5_paraphraser(sent)
|
71 |
+
t5_keywords = [get_keybert_results_with_vectorizer(i) for i in t5_paraphrased]
|
72 |
+
t5_keywords = [word[0] for s in t5_keywords for word in s]
|
73 |
+
|
74 |
+
t5_paraphrasing_keywords.extend(t5_keywords)
|
75 |
+
|
76 |
+
print(f'T5 Approach2 PARAPHRASING RUNTIME: {time.time()-start1}\n')
|
77 |
+
|
78 |
+
print('T5 Keywords Extracted: \n{}\n\n'.format(t5_paraphrasing_keywords))
|
79 |
+
print('----------------------------')
|
80 |
+
print('T5 Unique New Keywords Extracted: \n{}\n\n'.format([i for i in set(t5_paraphrasing_keywords)
|
81 |
+
if i not in original_keywords]))
|
82 |
+
|
83 |
+
return t5_paraphrasing_keywords
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|