Spaces:
Build error
Build error
File size: 968 Bytes
ebe69e3 9cc9f0f 1b80991 9cc9f0f 1b80991 ebe69e3 1b80991 ebe69e3 9cc9f0f ebe69e3 1b80991 12b4943 1b80991 720e187 1b80991 720e187 1b80991 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import streamlit as st
st.markdown("""### TL;DR: give me the keywords!
Here you can get the keywords and topic of the article based on it's title or abstract.""")
st.markdown("<p style=\"text-align:center\"><img width=700px src='https://c.tenor.com/IKt-6tAk9CUAAAAd/thats-a-lot-of-words-lots-of-words.gif'></p>", unsafe_allow_html=True)
#from transformers import pipeline
#pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl")
#st.markdown("#### Title:")
title = st.text_area("Title:")
abstract = st.text_area("abstract:")
from utils.utils import *
import spacy
import en_core_web_sm
# Вообще, стоит найти pipeline, заточенный под научный текст.
# Но этим займёмся потом, если будет время.
#main_nlp = spacy.load('en_core_web_sm')
main_nlp = en_core_web_sm.load()
text = title + abstract
#text = preprocess(text)
st.markdown(f"{get_candidates(text, main_nlp)}")
|