import streamlit as st st.markdown("""### TL;DR: give me the keywords! Here you can get the keywords and topic of the article based on it's title or abstract.""") st.markdown("
", unsafe_allow_html=True) #from transformers import pipeline #pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") #st.markdown("#### Title:") title = st.text_area("Title:") abstract = st.text_area("abstract:") from utils.utils import * import spacy import en_core_web_sm # Вообще, стоит найти pipeline, заточенный под научный текст. # Но этим займёмся потом, если будет время. #main_nlp = spacy.load('en_core_web_sm') main_nlp = en_core_web_sm.load() text = title + abstract #text = preprocess(text) st.markdown(f"{get_candidates(text, main_nlp)}")