File size: 8,062 Bytes
0606100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import json
import os
import shutil
from dataclasses import dataclass, field
from typing import Optional, Set
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoTokenizer,
HfArgumentParser
)
import onnx
from optimum.exporters.onnx import main_export, export_models
from optimum.exporters.tasks import TasksManager
from onnxruntime.quantization import (
quantize_dynamic,
QuantType
)
DEFAULT_QUANTIZE_PARAMS = {
'per_channel': True,
'reduce_range': True,
}
MODEL_SPECIFIC_QUANTIZE_PARAMS = {
'whisper': {
'per_channel': False,
'reduce_range': False,
}
}
MODELS_WITHOUT_TOKENIZERS = [
'wav2vec2'
]
@dataclass
class ConversionArguments:
"""
Arguments used for converting HuggingFace models to onnx.
"""
model_id: str = field(
metadata={
"help": "Model identifier"
}
)
quantize: bool = field(
default=False,
metadata={
"help": "Whether to quantize the model."
}
)
output_parent_dir: str = field(
default='./models/',
metadata={
"help": "Path where the converted model will be saved to."
}
)
task: Optional[str] = field(
default='auto',
metadata={
"help": (
"The task to export the model for. If not specified, the task will be auto-inferred based on the model. Available tasks depend on the model, but are among:"
f" {str(list(TasksManager._TASKS_TO_AUTOMODELS.keys()))}. For decoder models, use `xxx-with-past` to export the model using past key values in the decoder."
)
}
)
opset: int = field(
default=None,
metadata={
"help": (
"If specified, ONNX opset version to export the model with. Otherwise, the default opset will be used."
)
}
)
device: str = field(
default='cpu',
metadata={
"help": 'The device to use to do the export.'
}
)
skip_validation: bool = field(
default=False,
metadata={
"help": "Whether to skip validation of the converted model"
}
)
per_channel: bool = field(
default=None,
metadata={
"help": "Whether to quantize weights per channel"
}
)
reduce_range: bool = field(
default=None,
metadata={
"help": "Whether to quantize weights with 7-bits. It may improve the accuracy for some models running on non-VNNI machine, especially for per-channel mode"
}
)
output_attentions: bool = field(
default=False,
metadata={
"help": "Whether to output attentions from the model. NOTE: This is only supported for whisper models right now."
}
)
split_modalities: bool = field(
default=False,
metadata={
"help": "Whether to split multimodal models. NOTE: This is only supported for CLIP models right now."
}
)
def get_operators(model: onnx.ModelProto) -> Set[str]:
operators = set()
def traverse_graph(graph):
for node in graph.node:
operators.add(node.op_type)
for attr in node.attribute:
if attr.type == onnx.AttributeProto.GRAPH:
subgraph = attr.g
traverse_graph(subgraph)
traverse_graph(model.graph)
return operators
def quantize(model_names_or_paths, **quantize_kwargs):
"""
Quantize the weights of the model from float32 to int8 to allow very efficient inference on modern CPU
Uses unsigned ints for activation values, signed ints for weights, per
https://onnxruntime.ai/docs/performance/quantization.html#data-type-selection
it is faster on most CPU architectures
Args:
onnx_model_path: Path to location the exported ONNX model is stored
Returns: The Path generated for the quantized
"""
quantize_config = dict(
**quantize_kwargs,
per_model_config={}
)
for model in tqdm(model_names_or_paths, desc='Quantizing'):
directory_path = os.path.dirname(model)
file_name_without_extension = os.path.splitext(
os.path.basename(model))[0]
# NOTE:
# As of 2023/04/20, the current latest version of onnxruntime-web is 1.14.0, and does not support INT8 weights for Conv layers.
# For this reason, we choose model weight types to ensure compatibility with onnxruntime-web.
#
# As per docs, signed weight type (QInt8) is faster on most CPUs, so, we use that unless the model contains a Conv layer.
# For more information, see:
# - https://github.com/microsoft/onnxruntime/issues/3130#issuecomment-1105200621
# - https://github.com/microsoft/onnxruntime/issues/2339
loaded_model = onnx.load_model(model)
op_types = get_operators(loaded_model)
weight_type = QuantType.QUInt8 if 'Conv' in op_types else QuantType.QInt8
quantize_dynamic(
model_input=model,
model_output=os.path.join(
directory_path, f'{file_name_without_extension}_quantized.onnx'),
weight_type=weight_type,
optimize_model=False,
# TODO allow user to specify these
# op_types_to_quantize=['MatMul', 'Add', 'Conv'],
extra_options=dict(
EnableSubgraph=True
),
**quantize_kwargs
)
quantize_config['per_model_config'][file_name_without_extension] = dict(
op_types=list(op_types),
weight_type=str(weight_type),
)
# Save quantization config
with open(os.path.join(directory_path, 'quantize_config.json'), 'w') as fp:
json.dump(quantize_config, fp, indent=4)
def main():
"""
Example usage:
python quantize.py --model_id sentence-transformers/all-MiniLM-L6-v2-unquantized --quantize --task default
"""
parser = HfArgumentParser(
(ConversionArguments, )
)
conv_args, = parser.parse_args_into_dataclasses()
model_id = conv_args.model_id
output_model_folder = os.path.join(conv_args.output_parent_dir, model_id)
# Create output folder
os.makedirs(output_model_folder, exist_ok=True)
# Saving the model config
config = AutoConfig.from_pretrained(model_id)
tokenizer = None
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
except KeyError:
pass # No Tokenizer
except Exception as e:
if config.model_type not in MODELS_WITHOUT_TOKENIZERS:
raise e
# model_name_or_path can be local path or huggingface id
export_kwargs = dict(
model_name_or_path=model_id,
output=output_model_folder,
task=conv_args.task,
opset=conv_args.opset,
device=conv_args.device,
do_validation=not conv_args.skip_validation,
)
# Step 1. convert huggingface model to onnx
main_export(**export_kwargs)
# Step 2. (optional, recommended) quantize the converted model for fast inference and to reduce model size.
if conv_args.quantize:
# Update quantize config with model specific defaults
quantize_config = MODEL_SPECIFIC_QUANTIZE_PARAMS.get(
config.model_type, DEFAULT_QUANTIZE_PARAMS)
quantize([
os.path.join(output_model_folder, x)
for x in os.listdir(output_model_folder)
if x.endswith('.onnx') and not x.endswith('_quantized.onnx')
], **quantize_config)
# Step 3. Move .onnx files to the 'onnx' subfolder
os.makedirs(os.path.join(output_model_folder, 'onnx'), exist_ok=True)
for file in os.listdir(output_model_folder):
if file.endswith(('.onnx', '.onnx_data')):
shutil.move(os.path.join(output_model_folder, file),
os.path.join(output_model_folder, 'onnx', file))
if __name__ == '__main__':
main()
|