updated tabs
Browse files- app.py +60 -11
- run_mteb.py +0 -0
app.py
CHANGED
@@ -1,35 +1,84 @@
|
|
1 |
-
# my_table_app_gradio.py
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def display_table():
|
7 |
# Create a sample dataframe
|
8 |
data = {
|
9 |
"Model": ["ModelA", "ModelB", "ModelC"],
|
|
|
10 |
"Score": [0.92, 0.85, 0.89],
|
11 |
"Quantized Score": [0.91, 0.84, 0.88]
|
12 |
}
|
13 |
df = pd.DataFrame(data)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
html_table = df.to_html(classes="wide_table")
|
18 |
-
|
19 |
|
20 |
-
|
21 |
<style>
|
22 |
-
.wide_table {
|
23 |
width: 100%;
|
24 |
-
}
|
25 |
</style>
|
26 |
{html_table}
|
27 |
"""
|
28 |
|
29 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Create Gradio interface
|
32 |
iface = gr.Interface(fn=display_table, live=True, inputs=[], outputs="html")
|
33 |
|
34 |
iface.launch()
|
35 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Given list of tasks for clustering and pair classification
|
7 |
+
TASKS_CLUSTERING = [
|
8 |
+
"ArxivClusteringP2P",
|
9 |
+
"ArxivClusteringS2S",
|
10 |
+
"BiorxivClusteringP2P",
|
11 |
+
"BiorxivClusteringS2S",
|
12 |
+
"MedrxivClusteringP2P",
|
13 |
+
"MedrxivClusteringS2S",
|
14 |
+
"RedditClustering",
|
15 |
+
"RedditClusteringP2P",
|
16 |
+
"StackExchangeClustering",
|
17 |
+
"StackExchangeClusteringP2P",
|
18 |
+
"TwentyNewsgroupsClustering",
|
19 |
+
]
|
20 |
+
|
21 |
+
TASKS_PAIR_CLASSIFICATION = [
|
22 |
+
"SprintDuplicateQuestions",
|
23 |
+
"TwitterSemEval2015",
|
24 |
+
"TwitterURLCorpus",
|
25 |
+
]
|
26 |
|
27 |
def display_table():
|
28 |
# Create a sample dataframe
|
29 |
data = {
|
30 |
"Model": ["ModelA", "ModelB", "ModelC"],
|
31 |
+
"Model Size (MB)": [293, 793, 1000],
|
32 |
"Score": [0.92, 0.85, 0.89],
|
33 |
"Quantized Score": [0.91, 0.84, 0.88]
|
34 |
}
|
35 |
df = pd.DataFrame(data)
|
36 |
|
37 |
+
df.index.name = "Rank"
|
38 |
+
html_table = df.to_html()
|
|
|
|
|
39 |
|
40 |
+
html_content = f"""
|
41 |
<style>
|
42 |
+
.wide_table {{
|
43 |
width: 100%;
|
44 |
+
}}
|
45 |
</style>
|
46 |
{html_table}
|
47 |
"""
|
48 |
|
49 |
+
return html_content
|
50 |
+
|
51 |
+
|
52 |
+
def compute_model_score(model_name):
|
53 |
+
results_dir = "results"
|
54 |
+
model_dir = os.path.join(results_dir, model_name)
|
55 |
+
|
56 |
+
scores = []
|
57 |
+
|
58 |
+
# Get scores for clustering tasks
|
59 |
+
for task in TASKS_CLUSTERING:
|
60 |
+
task_file = os.path.join(model_dir, f"{task}.json")
|
61 |
+
with open(task_file, 'r') as f:
|
62 |
+
data = json.load(f)
|
63 |
+
v_measure = data['test']['v_measure']
|
64 |
+
scores.append(v_measure)
|
65 |
+
|
66 |
+
# Get scores for pair classification tasks
|
67 |
+
for task in TASKS_PAIR_CLASSIFICATION:
|
68 |
+
task_file = os.path.join(model_dir, f"{task}.json")
|
69 |
+
with open(task_file, 'r') as f:
|
70 |
+
data = json.load(f)
|
71 |
+
max_ap = data['test']['max']['ap']
|
72 |
+
scores.append(max_ap)
|
73 |
+
|
74 |
+
# Compute average score
|
75 |
+
average_score = sum(scores) / len(scores)
|
76 |
+
return average_score
|
77 |
+
|
78 |
+
|
79 |
+
# score = compute_model_score("ModelA")
|
80 |
|
81 |
# Create Gradio interface
|
82 |
iface = gr.Interface(fn=display_table, live=True, inputs=[], outputs="html")
|
83 |
|
84 |
iface.launch()
|
|
run_mteb.py
ADDED
File without changes
|