File size: 5,705 Bytes
3e188e6
 
93b8631
3e188e6
 
93b8631
3e188e6
 
 
 
 
 
 
 
93b8631
3e188e6
 
 
 
93b8631
3e188e6
 
dd68f2f
3e188e6
 
 
93b8631
3e188e6
 
93b8631
3e188e6
 
 
93b8631
 
3e188e6
93b8631
 
 
 
 
3e188e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b8631
 
3e188e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b8631
 
 
3e188e6
 
 
 
 
e84abd6
93b8631
 
3e188e6
 
 
93b8631
 
 
 
 
 
 
 
 
3e188e6
93b8631
 
3e188e6
 
 
 
93b8631
3e188e6
93b8631
 
 
 
3e188e6
93b8631
 
3e188e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import streamlit as st
import re
import string
from collections import Counter

from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForSequenceClassification, Trainer, TrainingArguments

from gensim.models import Word2Vec
from string import punctuation
import transformers
import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split
import time

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import pickle
import torch
from torch.utils.data import DataLoader, TensorDataset
import torch.nn as nn
import torchutils as tu
from torchmetrics.classification import BinaryAccuracy
from data.rnn_preprocessing import (
                                data_preprocessing, 
                                preprocess_single_string
                                )

def main():
    device = 'cpu'
    df = pd.read_csv('data/imdb.csv')
    df['sentiment'] = df['sentiment'].apply(lambda x: 1 if x == 'positive' else 0)
    reviews = df['review'].tolist()
    preprocessed = [data_preprocessing(review) for review in reviews]

    wv = Word2Vec.load('models/word2vec32.model')

    words_list = [word for review in preprocessed for word in review.lower().split()]
    for i in words_list:
        ''.join([j for j in i if j not in punctuation])
        
    # делаем множество уникальных слов.
    unique_words = set(words_list)

    # word -> index
    vocab_to_int = {word: idx+1 for idx, word in enumerate(sorted(unique_words))}

    word_seq = [i.split() for i in preprocessed]
    VOCAB_SIZE = len(vocab_to_int) + 1  # add 1 for the padding token
    EMBEDDING_DIM = 32
    HIDDEN_DIM = 64
    SEQ_LEN = 32

    embedding_matrix = np.zeros((VOCAB_SIZE, EMBEDDING_DIM))

    for word, i in vocab_to_int.items():
        try:
            embedding_vector = wv.wv[word]
            embedding_matrix[i] = embedding_vector
        except KeyError:
            pass

    embedding_layer32 = torch.nn.Embedding.from_pretrained(torch.FloatTensor(embedding_matrix))


    class LSTMClassifierBi32(nn.Module):
        def __init__(self, embedding_dim: int, hidden_size:int = 32) -> None:
            super().__init__()

            self.embedding_dim = embedding_dim
            self.hidden_size = hidden_size
            self.embedding = embedding_layer32
            self.lstm = nn.LSTM(
                input_size=self.embedding_dim,
                hidden_size=self.hidden_size,
                batch_first=True,
                bidirectional=True
            )
            self.clf = nn.Sequential(nn.Linear(self.hidden_size*2, 128), 
                nn.Dropout(),
                nn.Sigmoid(),
                nn.Linear(128, 64),
                nn.Dropout(),
                nn.Sigmoid(),
                nn.Linear(64, 1)
            )

        def forward(self, x):
            embeddings = self.embedding(x)
            out, (_, _) = self.lstm(embeddings)
            out = self.clf(out[:,-1,:])
            return out
        
    model = LSTMClassifierBi32(embedding_dim=EMBEDDING_DIM, hidden_size=HIDDEN_DIM)
    model.load_state_dict(torch.load('models/ltsm_bi1.pt'))
    model.eval()

    def predict_sentence(text:str, model: nn.Module):
        result = model.to(device)(preprocess_single_string(text, seq_len=SEQ_LEN, vocab_to_int=vocab_to_int).unsqueeze(0)).sigmoid().round().item()
        return 'negative' if result == 0.0 else 'positive'
    
    #Bag Tfidf
    # bagvectorizer = CountVectorizer(max_df=0.5,
    # min_df=5,
    # stop_words="english",)
    # bvect = bagvectorizer.fit(preprocessed)
    # X_bag = bvect.transform(preprocessed)

    tfid_vectorizer = TfidfVectorizer(
    max_df=0.5,
    min_df=5)
    vect = tfid_vectorizer.fit(preprocessed)
    X_tfidf = vect.transform(preprocessed)
    
    tfidf_model = pickle.load(open('models/modeltfidf.sav', 'rb'))
    # bag_model = pickle.load(open('models/modelbag.sav', 'rb'))
    # def predictbag(text):
    #     result = bag_model.predict(vect.transform([text]))
    #     return 'negative' if result == [0] else 'positive'

    def predicttf(text):
        result = tfidf_model.predict(vect.transform([text]))
        return 'negative' if result == [0] else 'positive'
    
        


    
    
    
    
    
    review = st.text_input('Enter review')

    start1 = time.time()
    
    tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
    config = AutoConfig.from_pretrained('distilbert-base-uncased', num_labels=2)
    
    automodel = AutoModelForSequenceClassification.from_config(config)
    autotoken = transformers.AutoTokenizer.from_pretrained('distilbert-base-uncased-finetuned-sst-2-english')

    input_tokens = autotoken(
        review, 
        return_tensors='pt', 
        padding=True, 
        max_length=10
    )
    outputs = automodel(**input_tokens)
    st.write('Sentiment Predictions')
    st.write(f'\nBERT: {[automodel.config.id2label[i.item()] for i in outputs.logits.argmax(-1)]}')
    end1 = time.time()
    st.write(f'{(end1 - start1):.2f} sec')
    start2 = time.time()

    st.write(f'LTSM: {predict_sentence(review, model)}')
    end2 = time.time()
    st.write(f'{(end2 - start2):.2f} sec')
    # start3 = time.time()
    # st.write(f'bag+log: {predictbag(review)}')
    # end3 = time.time()
    # st.write(f'{(end3 - start3):.2f} sec')
    start4 = time.time()
    st.write(f'tfidf+log: {predicttf(review)}')
    end4 = time.time()
    st.write(f'{(end4 - start4):.2f} sec')


    

if __name__ == '__main__':
    main()