File size: 4,257 Bytes
b6fadc7
 
 
 
 
 
3108590
b6fadc7
 
 
 
 
 
 
 
 
 
 
8dcd782
 
 
 
 
 
 
 
 
 
b6fadc7
e3e32d4
 
 
 
 
b6fadc7
 
 
 
 
 
025b139
b6fadc7
 
fbdf17d
 
 
 
 
 
 
 
 
 
 
 
8d13ddc
b6fadc7
3108590
b6fadc7
 
 
 
 
 
b1222b7
b6fadc7
 
 
 
 
 
 
 
 
7c81dd2
b6fadc7
3108590
 
 
1d03974
fbdf17d
4d7f09f
fbdf17d
b6fadc7
 
 
 
 
 
 
7c81dd2
b6fadc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
from typing import Optional
from pydantic import Field, BaseModel
from omegaconf import OmegaConf

from llama_index.core.utilities.sql_wrapper import SQLDatabase
from sqlalchemy import create_engine

from dotenv import load_dotenv
load_dotenv(override=True)

from vectara_agentic.agent import Agent
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory

def create_assistant_tools(cfg):    

    class QueryCFPBComplaints(BaseModel):
        query: str = Field(description="The user query.")
        Company: Optional[str] = Field(
            default=None,
            description="The company that the complaint is about.",
            examples=['CAPITAL ONE FINANCIAL CORPORATION', 'BANK OF AMERICA, NATIONAL ASSOCIATION', 'CITIBANK, N.A.', 'WELLS FARGO & COMPANY', 'JPMORGAN CHASE & CO.']
        )
        State: Optional[str] = Field(
            default=None,
            descripition="The two-character state code where the consumer lives.",
            examples=['CA', 'FL', 'NY', 'TX', 'GA']
        )

    vec_factory = VectaraToolFactory(
        vectara_api_key=cfg.api_keys,
        vectara_customer_id=cfg.customer_id,
        vectara_corpus_id=cfg.corpus_ids
    )
    
    summarizer = 'vectara-experimental-summary-ext-2023-12-11-med-omni'
    ask_complaints = vec_factory.create_rag_tool(
        tool_name = "ask_complaints",
        tool_description = """
        Given a user query, 
        returns a response to a user question about customer complaints for bank services.
        """,
        tool_args_schema = QueryCFPBComplaints,
        reranker = "chain", rerank_k = 100, 
        rerank_chain = [
            {
                "type": "slingshot",
                "cutoff": 0.2
            },
            {
                "type": "mmr",
                "diversity_bias": 0.4,
                "limit": 30
            }
        ],
        n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
        vectara_summarizer = summarizer,
        include_citations = True,
    )

    tools_factory = ToolsFactory()

    db_tools = tools_factory.database_tools(
                tool_name_prefix = "cfpb",
                content_description = 'Customer complaints about five banks (Bank of America, Wells Fargo, Capital One, Chase, and CITI Bank) and geographic information (counties and zip codes)',
                sql_database = SQLDatabase(create_engine('sqlite:///cfpb_database.db')),
            )

    return (tools_factory.standard_tools() + 
            tools_factory.guardrail_tools() +
            db_tools +
            [ask_complaints]
    )

def initialize_agent(_cfg, agent_progress_callback=None):
    cfpb_complaints_bot_instructions = """
    - You are a helpful research assistant, 
      with expertise in finance and complaints from the CFPB (Consumer Financial Protection Bureau), 
      in conversation with a user.
    - For analytical/numeric questions, try to use the cfpb_load_data and other database tools.
    - For questions about customers' complaints (the text of the complaint), use the ask_complaints tool.
      You only need the query parameter to use this tool, but you can supply other parameters if provided.
      Do not include the "References" section in your response.
    - Never discuss politics, and always respond politely.
    """

    agent = Agent(
        tools=create_assistant_tools(_cfg),
        topic="Customer complaints from the Consumer Financial Protection Bureau (CFPB)",
        custom_instructions=cfpb_complaints_bot_instructions,
        agent_progress_callback=agent_progress_callback
    )
    agent.report()
    return agent


def get_agent_config() -> OmegaConf:
    cfg = OmegaConf.create({
        'customer_id': str(os.environ['VECTARA_CUSTOMER_ID']),
        'corpus_ids': str(os.environ['VECTARA_CORPUS_IDS']),
        'api_keys': str(os.environ['VECTARA_API_KEYS']),
        'examples': os.environ.get('QUERY_EXAMPLES', None),
        'demo_name': "cfpb-assistant",
        'demo_welcome': "Welcome to the CFPB Customer Complaints demo.",
        'demo_description': "This assistant can help you gain insights into customer complaints to banks recorded by the Consumer Financial Protection Bureau.",
    })
    return cfg