Spaces:
Running
Running
from PIL import Image | |
import sys | |
import re | |
import streamlit as st | |
from streamlit_pills import pills | |
from streamlit_feedback import streamlit_feedback | |
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data | |
from vectara_agentic.agent import AgentStatusType | |
from agent import initialize_agent, get_agent_config | |
initial_prompt = "How can I help you today?" | |
def show_example_questions(): | |
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: | |
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None) | |
if selected_example: | |
st.session_state.ex_prompt = selected_example | |
st.session_state.first_turn = False | |
return True | |
return False | |
def format_log_msg(log_msg: str): | |
max_log_msg_size = 500 | |
return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...' | |
def agent_progress_callback(status_type: AgentStatusType, msg: str): | |
output = f'<span style="color:blue;">{status_type.value}</span>: {msg}' | |
st.session_state.log_messages.append(output) | |
if 'status' in st.session_state: | |
latest_message = '' | |
if status_type == AgentStatusType.TOOL_CALL: | |
match = re.search(r"'([^']*)'", msg) | |
tool_name = match.group(1) if match else "Unknown tool" | |
latest_message = f"Calling tool {tool_name}..." | |
elif status_type == AgentStatusType.TOOL_OUTPUT: | |
latest_message = "Analyzing tool output..." | |
else: | |
return | |
st.session_state.status.update(label=latest_message) | |
max_log_msg_size = 200 | |
with st.session_state.status: | |
for log_msg in st.session_state.log_messages: | |
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) | |
def show_modal(): | |
for log_msg in st.session_state.log_messages: | |
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) | |
async def launch_bot(): | |
def reset(): | |
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}] | |
st.session_state.log_messages = [] | |
st.session_state.prompt = None | |
st.session_state.ex_prompt = None | |
st.session_state.first_turn = True | |
st.session_state.show_logs = False | |
if 'agent' not in st.session_state: | |
st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback) | |
else: | |
st.session_state.agent.clear_memory() | |
if 'cfg' not in st.session_state: | |
cfg = get_agent_config() | |
st.session_state.cfg = cfg | |
st.session_state.ex_prompt = None | |
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else [] | |
st.session_state.example_messages = [em for em in example_messages if len(em)>0] | |
reset() | |
cfg = st.session_state.cfg | |
# left side content | |
with st.sidebar: | |
image = Image.open('Vectara-logo.png') | |
st.image(image, width=175) | |
st.markdown(f"## {cfg['demo_welcome']}") | |
st.markdown(f"{cfg['demo_description']}") | |
st.markdown("\n\n") | |
bc1, bc2 = st.columns([1, 1]) | |
with bc1: | |
if st.button('Start Over'): | |
reset() | |
st.rerun() | |
with bc2: | |
if st.button('Show Logs'): | |
show_modal() | |
st.divider() | |
st.markdown( | |
"## How this works?\n" | |
"This app was built with [Vectara](https://vectara.com).\n\n" | |
"It demonstrates the use of Agentic RAG functionality with Vectara" | |
) | |
if "messages" not in st.session_state.keys(): | |
reset() | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"], avatar=message["avatar"]): | |
st.write(message["content"]) | |
example_container = st.empty() | |
with example_container: | |
if show_example_questions(): | |
example_container.empty() | |
st.session_state.first_turn = False | |
st.rerun() | |
# User-provided prompt | |
if st.session_state.ex_prompt: | |
prompt = st.session_state.ex_prompt | |
else: | |
prompt = st.chat_input() | |
if prompt: | |
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) | |
st.session_state.prompt = prompt | |
st.session_state.log_messages = [] | |
st.session_state.show_logs = False | |
with st.chat_message("user", avatar='π§βπ»'): | |
print(f"Starting new question: {prompt}\n") | |
st.write(prompt) | |
st.session_state.ex_prompt = None | |
# Generate a new response if last message is not from assistant | |
if st.session_state.prompt: | |
with st.chat_message("assistant", avatar='π€'): | |
st.session_state.status = st.status('Processing...', expanded=False) | |
res = st.session_state.agent.chat(st.session_state.prompt) | |
res = escape_dollars_outside_latex(res) | |
message = {"role": "assistant", "content": res, "avatar": 'π€'} | |
st.session_state.messages.append(message) | |
st.markdown(res) | |
send_amplitude_data( | |
user_query=st.session_state.messages[-2]["content"], | |
bot_response=st.session_state.messages[-1]["content"], | |
demo_name=cfg['demo_name'] | |
) | |
st.session_state.ex_prompt = None | |
st.session_state.prompt = None | |
st.session_state.first_turn = False | |
st.rerun() | |
# Record user feedback | |
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt): | |
if "feedback_key" not in st.session_state: | |
st.session_state.feedback_key = 0 | |
streamlit_feedback( | |
feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key), | |
kwargs={"user_query": st.session_state.messages[-2]["content"], | |
"bot_response": st.session_state.messages[-1]["content"], | |
"demo_name": cfg["demo_name"]} | |
) | |
sys.stdout.flush() | |