cfpb-assistant / st_app.py
david-oplatka's picture
Limit Log Message Length
52430c9
from PIL import Image
import sys
import re
import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data
from vectara_agentic.agent import AgentStatusType
from agent import initialize_agent, get_agent_config
initial_prompt = "How can I help you today?"
def show_example_questions():
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
if selected_example:
st.session_state.ex_prompt = selected_example
st.session_state.first_turn = False
return True
return False
def format_log_msg(log_msg: str):
max_log_msg_size = 500
return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...'
def agent_progress_callback(status_type: AgentStatusType, msg: str):
output = f'<span style="color:blue;">{status_type.value}</span>: {msg}'
st.session_state.log_messages.append(output)
if 'status' in st.session_state:
latest_message = ''
if status_type == AgentStatusType.TOOL_CALL:
match = re.search(r"'([^']*)'", msg)
tool_name = match.group(1) if match else "Unknown tool"
latest_message = f"Calling tool {tool_name}..."
elif status_type == AgentStatusType.TOOL_OUTPUT:
latest_message = "Analyzing tool output..."
else:
return
st.session_state.status.update(label=latest_message)
max_log_msg_size = 200
with st.session_state.status:
for log_msg in st.session_state.log_messages:
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True)
@st.dialog(title="Agent logs", width='large')
def show_modal():
for log_msg in st.session_state.log_messages:
st.markdown(format_log_msg(log_msg), unsafe_allow_html=True)
async def launch_bot():
def reset():
st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
st.session_state.log_messages = []
st.session_state.prompt = None
st.session_state.ex_prompt = None
st.session_state.first_turn = True
st.session_state.show_logs = False
if 'agent' not in st.session_state:
st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback)
else:
st.session_state.agent.clear_memory()
if 'cfg' not in st.session_state:
cfg = get_agent_config()
st.session_state.cfg = cfg
st.session_state.ex_prompt = None
example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else []
st.session_state.example_messages = [em for em in example_messages if len(em)>0]
reset()
cfg = st.session_state.cfg
# left side content
with st.sidebar:
image = Image.open('Vectara-logo.png')
st.image(image, width=175)
st.markdown(f"## {cfg['demo_welcome']}")
st.markdown(f"{cfg['demo_description']}")
st.markdown("\n\n")
bc1, bc2 = st.columns([1, 1])
with bc1:
if st.button('Start Over'):
reset()
st.rerun()
with bc2:
if st.button('Show Logs'):
show_modal()
st.divider()
st.markdown(
"## How this works?\n"
"This app was built with [Vectara](https://vectara.com).\n\n"
"It demonstrates the use of Agentic RAG functionality with Vectara"
)
if "messages" not in st.session_state.keys():
reset()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message["avatar"]):
st.write(message["content"])
example_container = st.empty()
with example_container:
if show_example_questions():
example_container.empty()
st.session_state.first_turn = False
st.rerun()
# User-provided prompt
if st.session_state.ex_prompt:
prompt = st.session_state.ex_prompt
else:
prompt = st.chat_input()
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
st.session_state.prompt = prompt
st.session_state.log_messages = []
st.session_state.show_logs = False
with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
print(f"Starting new question: {prompt}\n")
st.write(prompt)
st.session_state.ex_prompt = None
# Generate a new response if last message is not from assistant
if st.session_state.prompt:
with st.chat_message("assistant", avatar='πŸ€–'):
st.session_state.status = st.status('Processing...', expanded=False)
res = st.session_state.agent.chat(st.session_state.prompt)
res = escape_dollars_outside_latex(res)
message = {"role": "assistant", "content": res, "avatar": 'πŸ€–'}
st.session_state.messages.append(message)
st.markdown(res)
send_amplitude_data(
user_query=st.session_state.messages[-2]["content"],
bot_response=st.session_state.messages[-1]["content"],
demo_name=cfg['demo_name']
)
st.session_state.ex_prompt = None
st.session_state.prompt = None
st.session_state.first_turn = False
st.rerun()
# Record user feedback
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt):
if "feedback_key" not in st.session_state:
st.session_state.feedback_key = 0
streamlit_feedback(
feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key),
kwargs={"user_query": st.session_state.messages[-2]["content"],
"bot_response": st.session_state.messages[-1]["content"],
"demo_name": cfg["demo_name"]}
)
sys.stdout.flush()