File size: 6,881 Bytes
58b9de9
d7b7dc6
150bb15
 
d7b7dc6
58b9de9
 
 
 
 
 
 
 
d7b7dc6
 
58b9de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7b7dc6
 
 
 
 
 
 
 
 
58b9de9
 
 
 
 
 
 
d7b7dc6
58b9de9
 
 
 
 
 
 
 
156ef43
150bb15
 
 
 
58b9de9
 
 
 
150bb15
 
404587d
58b9de9
 
 
156ef43
404587d
 
 
 
58b9de9
 
156ef43
58b9de9
 
 
 
150bb15
 
 
 
 
 
 
 
 
 
 
 
5c4aa1e
 
 
150bb15
 
5c4aa1e
 
 
150bb15
 
 
 
 
 
 
 
 
5c4aa1e
150bb15
5c4aa1e
 
150bb15
 
5c4aa1e
150bb15
 
 
5c4aa1e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import logging
import pandas as pd
import os
import csv

import src.envs as envs

from src.backend.model_operations import SummaryGenerator, EvaluationModel
import src.backend.util as util

logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')


class Evaluator:
    """A class to evaluate summaries generated by a language model.

    Attributes:
        model (str): The name or path of the model.
        revision (str): The model revision.
        precision (str): The precision setting of the model.
        num_fewshot (int): Number of few-shot examples to use.
        batch_size (int): Batch size for processing.
        device (str): The device to run the model on.
        no_cache (bool): Flag to disable caching.
        limit (int): Limit on the number of items to process.
        write_out (bool): Whether to write results to a file.
        output_base_path (str): Base path for output files.
        summary_generator (SummaryGenerator): Instance for generating summaries.
        eval_model (EvaluationModel): Instance for evaluating summaries.
    """
    def __init__(self, model, revision, precision, batch_size,
                device, no_cache, limit, write_out=True,
                output_base_path='logs'):
        """Initializes the Evaluator with the given model and settings.

        Args:
            model (str): The name or path of the model.
            revision (str): The model revision.
            precision (str): The precision setting of the model.
            num_fewshot (int): Number of few-shot examples to use.
            batch_size (int): Batch size for processing.
            device (str): The device to run the model on.
            no_cache (bool): Flag to disable caching.
            limit (int): Limit on the number of items to process.
            write_out (bool): Whether to write results to a file.
            output_base_path (str): Base path for output files.
        """
        self.model = model
        self.revision = revision
        self.precision = precision
        self.batch_size = batch_size
        self.device = device
        self.no_cache = no_cache
        self.limit = limit
        self.write_out = write_out
        self.output_base_path = output_base_path
        try:
            self.summary_generator = SummaryGenerator(model, revision)
            self.eval_model = EvaluationModel(envs.HEM_PATH)
        except Exception as e:
            logging.error(f"Error initializing Evaluator: {e}")
            raise

    def evaluate(self):
        """
        Performs the evaluation process by generating summaries 
        and computing metrics.

        Returns:
            dict: A dictionary containing evaluation results.
        """
        try:
            df = pd.read_csv(envs.DATASET_PATH)
            # print(envs.DATASET_PATH)
            # print(df.shape)
            # print(df.iloc[-1])
            self.generated_summaries_df = self.summary_generator.generate_summaries(df, save_path=f"generation_results/{self.model}.csv")

            avg_summary_len = self.summary_generator.avg_length
            answer_rate = self.summary_generator.answer_rate

            self.hallucination_scores, self.eval_results = self.eval_model.evaluate_hallucination(
                self.generated_summaries_df)
            factual_consistency_rate = self.eval_model.compute_factual_consistency_rate()
            hallucination_rate = self.eval_model.hallucination_rate

            results = util.format_results(model_name=self.model, revision=self.revision,
                                        precision=self.precision,
                                        factual_consistency_rate=factual_consistency_rate,
                                        hallucination_rate=hallucination_rate,
                                        answer_rate=answer_rate,
                                        avg_summary_len=avg_summary_len)
            return results
        except FileNotFoundError:
            logging.error(f"File not found: {envs.DATASET_PATH}")
            raise
        except Exception as e:
            logging.error(f"Error during evaluation: {e}")
            raise

    def write_results(self):
        print('Updating result files')
        leaderboard_path = os.getcwd() # the path of leaderboard folder
        print(leaderboard_path)
        working_path = os.path.join(leaderboard_path, 'Hallucination Leaderboard Results')
        if not os.path.exists(working_path):
            logging.error(f"Need to first download the results from google drive to the learderboard folder")
            raise
        
        source_summary_df = self.generated_summaries_df[["source", "summary"]]

        #update leaderboard_summaries.csv
        #first remove previous results for the current model
        # existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), encoding='utf-8')
        # mask = existing_df['model'] == self.model
        # existing_df = existing_df[~mask]
        # print(existing_df.shape)
        # summary_doc = set(existing_df['model'].values.tolist())
        # print(summary_doc)
        # # get new result
        leaderboard_summaries_df = source_summary_df
        leaderboard_summaries_df.insert(2, "model", [self.model]*leaderboard_summaries_df.shape[0])
        leaderboard_summaries_df.to_csv(os.path.join(working_path, 'leaderboard_summaries.csv'), mode='a', index=False, header=False)
        print('leaderboard_summaries.csv has been updated')

        # update leaderboard_summaries_with_scores.csv
        # BUG: get error when opening the file
        # existing_df = pd.read_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), 
        #                         encoding='utf-8', sep=",", quotechar='"', quoting=2)
        # print(existing_df.shape)
        # score_doc = set(existing_df['model'].values.tolist())
        # print(score_doc)
        # mask = existing_df['model'] == self.model
        # existing_df = existing_df[~mask]
        # # get new result
        leaderboard_summaries_with_scores_df = pd.DataFrame.from_dict(self.eval_results)
        leaderboard_summaries_with_scores_df.insert(3, "model", [self.model]*leaderboard_summaries_with_scores_df.shape[0])
        leaderboard_summaries_with_scores_df.to_csv(os.path.join(working_path, 'leaderboard_summaries_with_scores.csv'), mode='a', index=False, header=False)
        print('leaderboard_summaries_with_scores.csv has been updated')

        # for model in summary_doc:
        #     if model not in score_doc:
        #         print(f"{model} records missing in leaderboard_summaries_with_scores.csv")

        # for model in score_doc:
        #     if model not in summary_doc:
        #         print(f"{model} records missing in leaderboard_summaries.csv")