Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,061 Bytes
2a5f9fb df66f6e 2a5f9fb 156ef43 58b9de9 0c85a8e 2a5f9fb d7b7dc6 9833cdb 2a5f9fb 4ff9eef 395eff6 9833cdb 395eff6 58b9de9 2a5f9fb 58b9de9 efeee6d d7b7dc6 156ef43 099e4e2 58b9de9 2864204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import os
from huggingface_hub import HfApi
# replace this with our token
TOKEN = os.environ.get("HF_TOKEN", None)
OWNER = "vectara"
REPO_ID = f"{OWNER}/leaderboard"
QUEUE_REPO = f"{OWNER}/requests"
RESULTS_REPO = f"{OWNER}/results"
CACHE_PATH=os.getenv("HF_HOME", ".")
# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
DEVICE = "cpu"
API = HfApi(token=TOKEN)
DATASET_PATH = "src/datasets/leaderboard_dataset.csv"
SAMPLE_DATASET_PATH = "src/datasets/sample_dataset.csv"
HEM_PATH = 'vectara/hallucination_evaluation_model'
SYSTEM_PROMPT = "You are a chat bot answering questions using data. You must stick to the answers provided solely by the text in the passage provided."
USER_PROMPT = "You are asked the question 'Provide a concise summary of the following passage, covering the core pieces of information described': "
|