File size: 8,685 Bytes
2864204
 
 
58b9de9
 
d7b7dc6
 
58b9de9
d7b7dc6
2864204
2c24f05
d7b7dc6
58b9de9
2864204
58b9de9
 
 
 
 
 
 
 
2864204
 
d7b7dc6
 
58b9de9
 
 
 
 
 
 
 
d7b7dc6
 
 
58b9de9
2864204
 
 
 
 
 
 
 
 
 
 
 
58b9de9
 
 
 
 
 
 
 
 
 
 
 
 
2864204
d7b7dc6
58b9de9
 
 
2864204
 
58b9de9
 
 
 
 
 
d7b7dc6
58b9de9
 
 
 
 
 
 
2864204
 
d7b7dc6
 
 
 
2864204
d7b7dc6
 
58b9de9
 
 
 
 
 
 
 
d7b7dc6
2864204
d7b7dc6
2c24f05
d7b7dc6
 
156ef43
2864204
 
 
156ef43
2864204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c24f05
 
 
156ef43
2c24f05
 
d7b7dc6
58b9de9
 
2864204
d7b7dc6
 
 
 
 
 
58b9de9
 
 
2c24f05
 
d7b7dc6
 
2c24f05
58b9de9
 
2c24f05
 
d7b7dc6
2c24f05
d7b7dc6
 
58b9de9
 
 
2c24f05
 
 
 
d7b7dc6
2c24f05
d7b7dc6
58b9de9
d7b7dc6
58b9de9
 
 
 
 
 
 
 
 
d7b7dc6
58b9de9
 
 
 
 
 
d7b7dc6
 
404587d
d7b7dc6
 
 
58b9de9
2c24f05
58b9de9
d7b7dc6
58b9de9
 
d7b7dc6
58b9de9
 
 
2c24f05
156ef43
2c24f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b9de9
404587d
58b9de9
404587d
 
 
58b9de9
 
404587d
 
58b9de9
 
 
 
d7b7dc6
58b9de9
 
 
d7b7dc6
404587d
58b9de9
d7b7dc6
 
58b9de9
404587d
d7b7dc6
404587d
 
d7b7dc6
404587d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import time
from datetime import datetime
import logging

import numpy as np
import pandas as pd
import spacy
from sentence_transformers import CrossEncoder
from litellm import completion
from tqdm import tqdm

import src.backend.util as util
import src.envs as envs

# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')

# Load spacy model for word tokenization
nlp = spacy.load("en_core_web_sm")

os.environ["HUGGINGFACE_API_KEY"] =  envs.TOKEN


def load_evaluation_model(model_path):
    """Load the evaluation model from the given path

    Args:
        model_path (str): Path to the evaluation model

    Returns:
        CrossEncoder: The evaluation model
    """
    model = CrossEncoder(model_path)
    return model


def generate_summary(model: str, system_prompt: str, user_prompt: str, api_base: str):
    response = completion(
        model=model,
        messages=[{"role": "system", "content": system_prompt},
                    {"role": "user", "content": user_prompt}],
        temperature=0.0,
        max_tokens=1024,
        api_base=api_base,
    )
    return response['choices'][0]['message']['content']


class ModelLoadingException(Exception):
    """Exception raised for errors in loading a model.

    Attributes:
        model_id (str): The model identifier.
        revision (str): The model revision.
    """

    def __init__(self, model_id, revision, messages="Error initializing model"):
        self.model_id = model_id
        self.revision = revision
        super().__init__(f"{messages} id={model_id} revision={revision}")


class SummaryGenerator:
    """A class to generate summaries using a causal language model.

    Attributes:
        model (str): huggingface/{model_id}
        api_base (str): https://api-inference.huggingface.co/models/{model_id}
        summaries_df (DataFrame): DataFrame to store generated summaries.
        revision (str): Model revision.
        avg_length (float): Average length of summaries.
        answer_rate (float): Rate of non-empty summaries.
    """

    def __init__(self, model_id, revision):
        """
        Initializes the SummaryGenerator with a model.

        Args:
            model_id (str): Identifier for the model.
            revision (str): Revision of the model.
        """
        self.model = f"huggingface/{model_id}"
        self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
        self.summaries_df = pd.DataFrame()
        self.revision = revision
        self.avg_length = None
        self.answer_rate = None
        self.exceptions = None

    def generate_summaries(self, df):
        """Generate summaries for a given DataFrame of source docs.

        Args:
            df (DataFrame): DataFrame containing source docs.

        Returns:
            summaries_df (DataFrame): Generated summaries by the model.
        """
        source, summary, dataset = [], [], []
        exceptions = []

        for index, row in tqdm(df.iterrows(), total=df.shape[0]):
            _source = row['text']
            _dataset = row['dataset']

            system_prompt = envs.SYSTEM_PROMPT
            user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"

            while True:
                try:
                    _summary = generate_summary(self.model, system_prompt,
                                                user_prompt, self.api_base)
                    break
                except Exception as e:
                    if 'Rate limit reached' in str(e):
                        wait_time = 3660
                        current_time = datetime.now().strftime('%H:%M:%S')
                        print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
                        time.sleep(wait_time)
                    else:
                        print(f"Error at index {index}: {e}")
                        _summary = ""
                        exceptions.append(index)
                        break

            summary.append(_summary)
            source.append(_source)
            dataset.append(_dataset)

            # Sleep to prevent hitting rate limits too frequently
            time.sleep(1)

        self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
                                        columns=["source", "summary", "dataset"])
        self.exceptions = exceptions
        self._compute_avg_length()
        self._compute_answer_rate()

        return self.summaries_df

    def _compute_avg_length(self):
        """
        Compute the average length of non-empty summaries using SpaCy.
        """
        total_word_count = 0
        total_count = 0

        for summary in self.summaries_df['summary']:
            if util.is_summary_valid(summary):
                doc = nlp(summary)
                words = [token.text for token in doc if token.is_alpha]
                total_word_count += len(words)
                total_count += 1

        self.avg_length = 0 if total_count == 0 else total_word_count / total_count

    def _compute_answer_rate(self):
        """
        Compute the rate of non-empty summaries.
        """
        valid_count = sum(1 for summary in self.summaries_df['summary']
                            if util.is_summary_valid(summary))

        total_count = len(self.summaries_df)

        self.answer_rate = 0 if total_count == 0 else valid_count / total_count


class EvaluationModel:
    """A class to evaluate generated summaries.

    Attributes:
        model (CrossEncoder): The evaluation model.
        scores (list): List of evaluation scores.
        accuracy (float): Accuracy of the summaries.
        hallucination_rate (float): Rate of hallucination in summaries.
    """

    def __init__(self, model_path):
        """
        Initializes the EvaluationModel with a CrossEncoder model.

        Args:
            model_path (str): Path to the CrossEncoder model.
        """
        self.model = load_evaluation_model(model_path)
        self.scores = []
        self.factual_consistency_rate = None
        self.hallucination_rate = None

    def evaluate_hallucination(self, summaries_df):
        """
        Evaluate the hallucination rate in summaries. Updates the 'scores' attribute 
        of the instance with the computed scores.

        Args:
            summaries_df (DataFrame): DataFrame containing source docs and summaries.

        Returns:
            list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
        """
        hem_scores = []
        source_summary_pairs = util.create_pairs(summaries_df)

        for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"):
            if util.is_summary_valid(summary):
                try:
                    score = self.model.predict([doc, summary])[0]
                    if not isinstance(score, float):
                        logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
                        continue
                    hem_scores.append(score)
                except Exception as e:
                    logging.error(f"Error while running HEM: {e}")
                    raise

        self.scores = hem_scores
        return hem_scores


    def compute_factual_consistency_rate(self, threshold=0.5):
        """
        Compute the factual consistency rate of the evaluated summaries based on
        the previously calculated scores. This method relies on the 'scores'
        attribute being populated, typically via the 'evaluate_hallucination' method.

        Returns:
            float: Factual Consistency Rate. Also updates the 'factual_consistency_rate'
            and 'hallucination_rate' attributes of the instance.

        Raises:
            ValueError: If scores have not been calculated prior to calling this method.
        """
        if not self.scores:
            error_msg = "Scores not calculated. Call evaluate_hallucination() first."
            logging.error(error_msg)
            raise ValueError(error_msg)

        # Use threshold of 0.5 to compute factual_consistency_rate
        num_above_threshold = sum(score >= threshold for score in self.scores)
        num_total = len(self.scores)

        if not num_total:
            raise ValueError("No scores available to compute factual consistency rate.")

        self.factual_consistency_rate = (num_above_threshold / num_total) * 100
        self.hallucination_rate = 100 - self.factual_consistency_rate

        return self.factual_consistency_rate