Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
import json | |
import os | |
import pandas as pd | |
from huggingface_hub import Repository | |
from transformers import AutoConfig | |
from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values | |
from src.display_models.get_model_metadata import apply_metadata | |
from src.display_models.read_results import get_eval_results_dicts, make_clickable_model | |
from src.display_models.utils import AutoEvalColumn, EvalQueueColumn, has_no_nan_values | |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) | |
def get_all_requested_models(requested_models_dir: str) -> set[str]: | |
depth = 1 | |
file_names = [] | |
for root, _, files in os.walk(requested_models_dir): | |
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) | |
if current_depth == depth: | |
for file in files: | |
if not file.endswith(".json"): continue | |
with open(os.path.join(root, file), "r") as f: | |
info = json.load(f) | |
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") | |
return set(file_names) | |
def load_all_info_from_hub(QUEUE_REPO: str, RESULTS_REPO: str, QUEUE_PATH: str, RESULTS_PATH: str) -> list[Repository]: | |
eval_queue_repo = None | |
eval_results_repo = None | |
requested_models = None | |
print("Pulling evaluation requests and results.") | |
eval_queue_repo = Repository( | |
local_dir=QUEUE_PATH, | |
clone_from=QUEUE_REPO, | |
repo_type="dataset", | |
) | |
eval_queue_repo.git_pull() | |
eval_results_repo = Repository( | |
local_dir=RESULTS_PATH, | |
clone_from=RESULTS_REPO, | |
repo_type="dataset", | |
) | |
eval_results_repo.git_pull() | |
requested_models = get_all_requested_models("eval-queue") | |
return eval_queue_repo, requested_models, eval_results_repo | |
def get_leaderboard_df( | |
eval_results: Repository, eval_results_private: Repository, cols: list, benchmark_cols: list | |
) -> pd.DataFrame: | |
if eval_results: | |
print("Pulling evaluation results for the leaderboard.") | |
eval_results.git_pull() | |
if eval_results_private: | |
print("Pulling evaluation results for the leaderboard.") | |
eval_results_private.git_pull() | |
all_data = get_eval_results_dicts() | |
if not IS_PUBLIC: | |
all_data.append(gpt4_values) | |
all_data.append(gpt35_values) | |
all_data.append(baseline) | |
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py` | |
df = pd.DataFrame.from_records(all_data) | |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
df = df[cols].round(decimals=2) | |
# filter out if any of the benchmarks have not been produced | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
return df | |
def get_evaluation_queue_df( | |
eval_queue: Repository, eval_queue_private: Repository, save_path: str, cols: list | |
) -> list[pd.DataFrame]: | |
if eval_queue: | |
print("Pulling changes for the evaluation queue.") | |
eval_queue.git_pull() | |
if eval_queue_private: | |
print("Pulling changes for the evaluation queue.") | |
eval_queue_private.git_pull() | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |
def is_model_on_hub(model_name: str, revision: str) -> bool: | |
try: | |
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False) | |
return True, None | |
except ValueError: | |
return ( | |
False, | |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", | |
) | |
except Exception as e: | |
print(f"Could not get the model config from the hub.: {e}") | |
return False, "was not found on hub!" | |