Spaces:
Running
Running
import requests | |
import json | |
class VectaraQuery(): | |
def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str]): | |
self.customer_id = customer_id | |
self.corpus_ids = corpus_ids | |
self.api_key = api_key | |
self.START_TAG = "<em_start>" | |
self.END_TAG = "<em_end>" | |
self.prompt_name = "vectara-summary-ext-24-05-med" | |
self.prompt_text = ''' | |
[{"role": "system", "content": "Follow these detailed step-by-step instructions, your task is to generate an accurate and coherent summary of the first search result. | |
- You will receive a single search result enclosed in triple quotes, which includes part of a script from a movie. | |
- the search result can be a part of a larger movie scence, and may be incomplete. | |
- the text is a sequence of subtitles from the movie itself. | |
- Base your summary only on the information provided in the search result, do not use any other sources. | |
- Do no include the word summary in your response, just the summary itself. | |
- Summarize the scene including who the characters are, what they do and any other important detail."}, | |
{"role": "user", "content": "#foreach ($qResult in $vectaraQueryResults) Search Result $esc.java($foreach.index + 1): \'\'\'$esc.java($qResult.text())\'\'\'.#end"} | |
] | |
''' | |
def get_body(self, query_str: str, filter: str = None, summarize: bool = True): | |
corpora_key_list = [{ | |
'customerId': self.customer_id, 'corpusId': corpus_id, 'lexicalInterpolationConfig': {'lambda': 0.005} | |
} for corpus_id in self.corpus_ids | |
] | |
if filter: | |
for key in corpora_key_list: | |
key['filter'] = filter | |
sent_before = 15 if summarize else 1 | |
sent_after = 15 if summarize else 1 | |
body = { | |
'query': [ | |
{ | |
'query': query_str, | |
'start': 0, | |
'numResults': 50, | |
'corpusKey': corpora_key_list, | |
'contextConfig': { | |
'sentences_before': sent_before, | |
'sentences_after': sent_after, | |
'start_tag': self.START_TAG, | |
'end_tag': self.END_TAG | |
}, | |
} | |
] | |
} | |
if summarize: | |
body['query'][0]['summary'] = [ | |
{ | |
'responseLang': 'eng', | |
'maxSummarizedResults': 1, | |
'summarizerPromptName': self.prompt_name, | |
'promptText': self.prompt_text | |
} | |
] | |
else: | |
body['query'][0]['rerankingConfig'] = { 'rerankerId': 272725719 } # rerank only in main query, not when summarizing | |
return body | |
def get_headers(self): | |
return { | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
"customer-id": self.customer_id, | |
"x-api-key": self.api_key, | |
"grpc-timeout": "60S" | |
} | |
def submit_query(self, query_str: str): | |
endpoint = "https://api.vectara.io/v1/query" | |
body = self.get_body(query_str, filter=None, summarize=False) | |
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) | |
if response.status_code != 200: | |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") | |
return "Sorry, something went wrong in my brain. Please try again later." | |
res = response.json() | |
top_k = 3 | |
responses = res['responseSet'][0]['response'][:top_k] | |
documents = res['responseSet'][0]['document'] | |
metadatas = [] | |
for x in responses: | |
md = {m["name"]: m["value"] for m in x["metadata"]} | |
doc_num = x["documentIndex"] | |
doc_id = documents[doc_num]["id"] | |
md['doc_id'] = doc_id | |
doc_md = {f'doc_{m["name"]}': m["value"] for m in documents[doc_num]["metadata"]} | |
md.update(doc_md) | |
metadatas.append(md) | |
movie_title = metadatas[0].get("doc_title", None) | |
snippet_url = metadatas[0].get("url", None) | |
score = responses[0]["score"] | |
doc_id = metadatas[0]["doc_id"] | |
matching_text = responses[0]["text"].split(self.START_TAG)[1].split(self.END_TAG)[0].strip() | |
return movie_title, snippet_url, score, doc_id, matching_text | |
def get_summary(self, query_str: str, doc_id: str): | |
endpoint = "https://api.vectara.io/v1/query" | |
filter = f"doc.id == '{doc_id}'" | |
body = self.get_body(query_str, filter, summarize=True) | |
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) | |
if response.status_code != 200: | |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") | |
return "Sorry, something went wrong in my brain. Please try again later." | |
res = response.json() | |
summary = res['responseSet'][0]['summary'][0]['text'] | |
return summary | |