import requests import json class VectaraQuery(): def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str]): self.customer_id = customer_id self.corpus_ids = corpus_ids self.api_key = api_key self.START_TAG = "" self.END_TAG = "" self.prompt_name = "vectara-summary-ext-24-05-med" self.prompt_text = ''' [{"role": "system", "content": "Follow these detailed step-by-step instructions, your task is to generate an accurate and coherent summary of the first search result. - You will receive a single search result enclosed in triple quotes, which includes part of a script from a movie. - the search result can be a part of a larger movie scence, and may be incomplete. - the text is a sequence of subtitles from the movie itself. - Base your summary only on the information provided in the search result, do not use any other sources. - Do no include the word summary in your response, just the summary itself. - Summarize the scene including who the characters are, what they do and any other important detail."}, {"role": "user", "content": "#foreach ($qResult in $vectaraQueryResults) Search Result $esc.java($foreach.index + 1): \'\'\'$esc.java($qResult.text())\'\'\'.#end"} ] ''' def get_body(self, query_str: str, filter: str = None, summarize: bool = True): corpora_key_list = [{ 'customerId': self.customer_id, 'corpusId': corpus_id, 'lexicalInterpolationConfig': {'lambda': 0.005} } for corpus_id in self.corpus_ids ] if filter: for key in corpora_key_list: key['filter'] = filter sent_before = 15 if summarize else 1 sent_after = 15 if summarize else 1 body = { 'query': [ { 'query': query_str, 'start': 0, 'numResults': 50, 'corpusKey': corpora_key_list, 'contextConfig': { 'sentences_before': sent_before, 'sentences_after': sent_after, 'start_tag': self.START_TAG, 'end_tag': self.END_TAG }, } ] } if summarize: body['query'][0]['summary'] = [ { 'responseLang': 'eng', 'maxSummarizedResults': 1, 'summarizerPromptName': self.prompt_name, 'promptText': self.prompt_text } ] else: body['query'][0]['rerankingConfig'] = { 'rerankerId': 272725719 } # rerank only in main query, not when summarizing return body def get_headers(self): return { "Content-Type": "application/json", "Accept": "application/json", "customer-id": self.customer_id, "x-api-key": self.api_key, "grpc-timeout": "60S" } def submit_query(self, query_str: str): endpoint = "https://api.vectara.io/v1/query" body = self.get_body(query_str, filter=None, summarize=False) response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) if response.status_code != 200: print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") return "Sorry, something went wrong in my brain. Please try again later." res = response.json() top_k = 3 responses = res['responseSet'][0]['response'][:top_k] documents = res['responseSet'][0]['document'] metadatas = [] for x in responses: md = {m["name"]: m["value"] for m in x["metadata"]} doc_num = x["documentIndex"] doc_id = documents[doc_num]["id"] md['doc_id'] = doc_id doc_md = {f'doc_{m["name"]}': m["value"] for m in documents[doc_num]["metadata"]} md.update(doc_md) metadatas.append(md) movie_title = metadatas[0].get("doc_title", None) snippet_url = metadatas[0].get("url", None) score = responses[0]["score"] doc_id = metadatas[0]["doc_id"] matching_text = responses[0]["text"].split(self.START_TAG)[1].split(self.END_TAG)[0].strip() return movie_title, snippet_url, score, doc_id, matching_text def get_summary(self, query_str: str, doc_id: str): endpoint = "https://api.vectara.io/v1/query" filter = f"doc.id == '{doc_id}'" body = self.get_body(query_str, filter, summarize=True) response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) if response.status_code != 200: print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") return "Sorry, something went wrong in my brain. Please try again later." res = response.json() summary = res['responseSet'][0]['summary'][0]['text'] return summary