File size: 5,534 Bytes
60ab574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08dab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub
from getpass import getpass
import gradio as gr
import os
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_agent
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.memory import ConversationSummaryBufferMemory
import io
import contextlib


embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
vector_store= FAISS.load_local("vector_db/", embeddings)

repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1"
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.01, "max_new_tokens": 2048})

memory = ConversationSummaryBufferMemory(
    llm=llm,
    output_key='answer',
    memory_key='chat_history',
    return_messages=True)

retriever = vector_store.as_retriever(
    search_type="similarity",
    search_kwargs={"k": 10, "include_metadata": True})

qa = ConversationalRetrievalChain.from_llm(
    llm=llm,
    memory=memory,
    chain_type="stuff",
    retriever=retriever,
    return_source_documents=True,
    get_chat_history=lambda h : h,
    verbose=False)

agent=create_csv_agent(llm,['data/Gretel_Data.csv','data/RAN_Data _T.csv'],verbose=True)

def echo(message, history):
  context_prompt = """<s> [INST] Assume the role of Clara, a seasoned senior telecom network engineer with access to troubleshooting tickets data and various technical and product documentation.
                      Rely on information derived from these tickets to address queries. Feel free to seek clarification through relevant questions."""
  csv_context_prompt = """Assume access to multiple files, including a CSV with ticket details (ticket ID as primary key, columns like network element, location, RCA, status, severity, etc.).
                          The model should refer to the CSV file specifically when users inquire about tickets or related network issues. For other queries, the model can utilize information from the broader context or available data sources as needed."""
  # message = "Your name is Clara. You are a helpful senior telecom network engineer having access to troubleshooting tickets data and other technical and product documentation.Stick to the knowledge from these tickets. Ask clarification questions if needed. "+ message
  message= context_prompt + csv_context_prompt + "User Query: "+ message + "Let's think step by step. [/INST]"
  result=qa({"question":message})
  bold_answer= "<b>" + result['answer'] + "</b>"
  return bold_answer + "<br></br>" +'1. ' + str(result["source_documents"][0]) +"<br>" + '2. ' + str(result["source_documents"][1]) +  "<br>" + "3. " + str(result["source_documents"][2])
def echo_agent(message, history):
  message="There are 2 df's. If you find a KeyError check for the same in the other df." + "<br>" + message
  try:
    with io.StringIO() as buffer:
      with contextlib.redirect_stdout(buffer):
        result= agent.run(message)
      verbose_output = buffer.getvalue()
      verbose_output = verbose_output.replace("\x1b[36;1m\x1b[1;3m", "")
      verbose_output = verbose_output.replace("> ", "")
      verbose_output = verbose_output.replace("", "")
      verbose_output = verbose_output.replace("", "")
      result= "<b>" + verbose_output + "<br>" + result + "</b>"
    return result
  except Exception as e:
    error_message = f"An error occurred: {e}"+str(e.with_traceback) + str(e.args)
    return error_message

demo=gr.ChatInterface(
        fn=echo,
        chatbot=gr.Chatbot(height=300, label="Hi I am Clara!", show_label=True),
        textbox=gr.Textbox(placeholder="Ask me a question", container=True, autofocus=True, scale=7),
        title="Network Ticket Knowledge Management",
        description="<span style='font-size: 16x;'>Welcome to Verizon Network Operations Center!! I am here to help the Verizon Field Operations team with technical queries & escalation. I am trained on 1000s of RAN, Backhaul, Core network & End user equipment trouble tickets. Ask me!!!&nbsp;☺</span>",
        theme=gr.themes.Soft(),
        examples=["wifi connected but no internet showing", "internet stoped working after primary link down", "internet stoped working link not shifted to secondary after primary link down"],
        cache_examples=False,
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
        stop_btn="Stop",
    )


demo1=gr.ChatInterface(
        fn=echo_agent,
        chatbot=gr.Chatbot(height=300, label="Hi I am Sam!", show_label=True),
        textbox=gr.Textbox(placeholder="Ask me a question", container=True, autofocus=True, scale=7),
        title="LLM Powered Agent",
        description="<span style='font-size: 16x;'>Welcome to Verizon RAN Visualization & Analytics powered by GEN AI. I have access 100 of metrices generated by a RAN base station and can help in visualizing, correlating and generating insights, using power of Conversational AI &nbsp;☺</span>",
        theme=gr.themes.Soft(),
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
        stop_btn="Stop",
    )
demo2=gr.TabbedInterface([demo,demo1],["RAG","AGENT"], title='INCEDO', theme=gr.themes.Soft())
demo2.launch(auth=("admin", "Sam&Clara"))