Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -43,10 +43,9 @@ qa = ConversationalRetrievalChain.from_llm(
|
|
43 |
agent=create_csv_agent(llm,['data/Gretel_Data.csv','data/RAN_Data _T.csv'],verbose=True)
|
44 |
|
45 |
def echo(message, history):
|
46 |
-
context_prompt = """
|
47 |
Rely on information derived from these tickets to address queries. Feel free to seek clarification through relevant questions."""
|
48 |
-
|
49 |
-
message= context_prompt + "User Query: "+ message + "If asked about Root cause analysis (rca), give only one possible awnser and then give the steps to resolve in the exact format which is :- The steps to resolve could be - [/INST]"
|
50 |
result=qa({"question":message})
|
51 |
bold_answer= "<b>" + result['answer'] + "</b>"
|
52 |
return bold_answer + "<br></br>" +'1. ' + str(result["source_documents"][0]) +"<br>" + '2. ' + str(result["source_documents"][1]) + "<br>" + "3. " + str(result["source_documents"][2])
|
|
|
43 |
agent=create_csv_agent(llm,['data/Gretel_Data.csv','data/RAN_Data _T.csv'],verbose=True)
|
44 |
|
45 |
def echo(message, history):
|
46 |
+
context_prompt = """Assume the role of Clara, a seasoned senior telecom network engineer with access to troubleshooting tickets data and various technical and product documentation.
|
47 |
Rely on information derived from these tickets to address queries. Feel free to seek clarification through relevant questions."""
|
48 |
+
message= context_prompt + "User Query: "+ message + "If asked about Root cause analysis (rca), give only one possible awnser and then give the steps to resolve in the exact format which is :- The steps to resolve could be:"
|
|
|
49 |
result=qa({"question":message})
|
50 |
bold_answer= "<b>" + result['answer'] + "</b>"
|
51 |
return bold_answer + "<br></br>" +'1. ' + str(result["source_documents"][0]) +"<br>" + '2. ' + str(result["source_documents"][1]) + "<br>" + "3. " + str(result["source_documents"][2])
|