vedsadani ShivanshMathur007 commited on
Commit
807d3fc
1 Parent(s): bfb5920

Update app.py (#4)

Browse files

- Update app.py (e7f77a8622e201f6165a1d1100dcd7ffc1543125)


Co-authored-by: Shivansh Mathur <ShivanshMathur007@users.noreply.huggingface.co>

Files changed (1) hide show
  1. app.py +6 -23
app.py CHANGED
@@ -1,5 +1,4 @@
1
  from langchain.vectorstores import FAISS
2
- # from langchain.chains import ConversationalRetrievalChain
3
  from langchain.chains import RetrievalQA
4
  from langchain.llms import HuggingFaceHub
5
  import gradio as gr
@@ -9,36 +8,19 @@ from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_age
9
  from langchain.document_loaders import PyPDFDirectoryLoader
10
  from langchain.document_loaders.csv_loader import CSVLoader
11
  from langchain.text_splitter import RecursiveCharacterTextSplitter
12
- from langchain.memory import ConversationSummaryBufferMemory
13
  import io
14
  import contextlib
15
 
16
 
17
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
18
  vector_store= FAISS.load_local("vector_db/", embeddings)
19
 
20
  repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1"
21
  llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.01, "max_new_tokens": 2048})
22
 
23
- # memory = ConversationSummaryBufferMemory(
24
- # llm=llm,
25
- # output_key='answer',
26
- # memory_key='chat_history',
27
- # max_token_limit=300,
28
- # return_messages=True)
29
-
30
- # retriever = vector_store.as_retriever(
31
- # search_type="similarity",
32
- # search_kwargs={"k": 10, "include_metadata": True})
33
-
34
- # qa = ConversationalRetrievalChain.from_llm(
35
- # llm=llm,
36
- # memory=memory,
37
- # chain_type="stuff",
38
- # retriever=retriever,
39
- # return_source_documents=True,
40
- # get_chat_history=lambda h : h,
41
- # verbose=True)
42
 
43
  agent=create_csv_agent(llm,['data/Gretel_Data.csv','data/RAN_Data _T.csv'],verbose=True)
44
 
@@ -98,4 +80,5 @@ demo1=gr.ChatInterface(
98
  stop_btn="Stop",
99
  )
100
  demo2=gr.TabbedInterface([demo,demo1],["RAG","AGENT"], title='INCEDO', theme=gr.themes.Soft())
101
- demo2.launch(auth=("admin", "Sam&Clara"))
 
 
1
  from langchain.vectorstores import FAISS
 
2
  from langchain.chains import RetrievalQA
3
  from langchain.llms import HuggingFaceHub
4
  import gradio as gr
 
8
  from langchain.document_loaders import PyPDFDirectoryLoader
9
  from langchain.document_loaders.csv_loader import CSVLoader
10
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
11
  import io
12
  import contextlib
13
 
14
 
15
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
16
  vector_store= FAISS.load_local("vector_db/", embeddings)
17
 
18
  repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1"
19
  llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.01, "max_new_tokens": 2048})
20
 
21
+ retriever = vector_store.as_retriever(
22
+ search_type="similarity",
23
+ search_kwargs={"k":3, "include_metadata": True})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  agent=create_csv_agent(llm,['data/Gretel_Data.csv','data/RAN_Data _T.csv'],verbose=True)
26
 
 
80
  stop_btn="Stop",
81
  )
82
  demo2=gr.TabbedInterface([demo,demo1],["RAG","AGENT"], title='INCEDO', theme=gr.themes.Soft())
83
+ demo2.launch(share=True,debug=True,auth=("admin", "Sam&Clara"))
84
+