from langchain.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain from langchain.llms import HuggingFaceHub import gradio as gr import os from langchain.embeddings import HuggingFaceEmbeddings from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_agent from langchain.document_loaders import PyPDFDirectoryLoader from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.memory import ConversationSummaryBufferMemory import io import contextlib embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2") vector_store= FAISS.load_local("vector_db/", embeddings) repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1" llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": 0.01, "max_new_tokens": 2048}) memory = ConversationSummaryBufferMemory( llm=llm, output_key='answer', memory_key='chat_history', max_token_limit=300, return_messages=True) retriever = vector_store.as_retriever( search_type="similarity", search_kwargs={"k": 10, "include_metadata": True}) qa = ConversationalRetrievalChain.from_llm( llm=llm, memory=memory, chain_type="stuff", retriever=retriever, return_source_documents=True, get_chat_history=lambda h : h, verbose=True) agent=create_csv_agent(llm,['data/Gretel_Data.csv','data/RAN_Data _T.csv'],verbose=True) def echo(message, history): context_prompt = """Assume the role of Clara, a seasoned senior telecom network engineer with access to troubleshooting tickets data and various technical and product documentation. Rely on information derived from these tickets to address queries. Feel free to seek clarification through relevant questions.""" csv_context_prompt = """Assume access to multiple files, including a CSV with ticket details (ticket ID as primary key, columns like network element, location, RCA, status, severity, etc.). The model should refer to the CSV file specifically when users inquire about tickets or related network issues. For other queries, the model can utilize information from the broader context or available data sources as needed.""" message= context_prompt + csv_context_prompt + "User Query: "+ message + "If asked about Root cause analysis (rca), give only one possible awnser and then give the steps to resolve in the exact format which is :- The steps to resolve could be -" result=qa({"question":message}) bold_answer= "" + result['answer'].split('Helpful Answer:')[-1] + "" return bold_answer + "

" +'1. ' + str(result["source_documents"][0]) +"
" + '2. ' + str(result["source_documents"][1]) + "
" + "3. " + str(result["source_documents"][2]) def echo_agent(message, history): message="There are 2 df's. If you find a KeyError check for the same in the other df." + "
" + message try: with io.StringIO() as buffer: with contextlib.redirect_stdout(buffer): result= agent.run(message) verbose_output = buffer.getvalue() verbose_output = verbose_output.replace("\x1b[36;1m\x1b[1;3m", "") verbose_output = verbose_output.replace("> ", "") verbose_output = verbose_output.replace("", "") verbose_output = verbose_output.replace("", "") result= "" + verbose_output + "
" + result + "
" return result except Exception as e: error_message = f"An error occurred: {e}"+str(e.with_traceback) + str(e.args) return error_message demo=gr.ChatInterface( fn=echo, chatbot=gr.Chatbot(height=300, label="Hi I am Clara!", show_label=True), textbox=gr.Textbox(placeholder="Ask me a question", container=True, autofocus=True, scale=7), title="Network Ticket Knowledge Management", description="Welcome to Verizon Network Operations Center!! I am here to help the Verizon Field Operations team with technical queries & escalation. I am trained on 1000s of RAN, Backhaul, Core network & End user equipment trouble tickets. Ask me!!! ☺", theme=gr.themes.Soft(), examples=["wifi connected but no internet showing", "internet stopped working after primary link down", "internet stopped working link not shifted to secondary after primary link down"], cache_examples=False, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", stop_btn="Stop", ) demo1=gr.ChatInterface( fn=echo_agent, chatbot=gr.Chatbot(height=300, label="Hi I am Sam!", show_label=True), textbox=gr.Textbox(placeholder="Ask me a question", container=True, autofocus=True, scale=7), title="LLM Powered Agent", description="Welcome to Verizon RAN Visualization & Analytics powered by GEN AI. I have access 100 of metrices generated by a RAN base station and can help in visualizing, correlating and generating insights, using power of Conversational AI  ☺", theme=gr.themes.Soft(), retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", stop_btn="Stop", ) demo2=gr.TabbedInterface([demo,demo1],["RAG","AGENT"], title='INCEDO', theme=gr.themes.Soft()) demo2.launch(auth=("admin", "Sam&Clara"))