File size: 8,977 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
92c3c2a
f670afc
92c3c2a
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gradio as gr
import numpy as np
import os
from PIL import Image
import torch
import torchvision.transforms as transforms
import options
import test
import importlib
from scipy.interpolate import interp1d, splev, splprep
import cv2
import subprocess

subprocess.run(["bash", "install_imaginaire.sh"])

def get_single(sat_img, style_img, x_offset, y_offset):
    name = ''
    for i in [name for name in os.listdir('demo_img') if 'case' in name]:
        style = Image.open('demo_img/{}/groundview.image.png'.format(i)).convert('RGB')
        style =np.array(style)
        if (style == style_img).all():
            name = i
            break

    input_dict = {}
    trans = transforms.ToTensor()
    input_dict['sat'] = trans(sat_img)
    input_dict['pano'] = trans(style_img)
    input_dict['paths'] = "demo.png"
    sky = trans(Image.open('demo_img/{}/groundview.sky.png'.format(name)).convert("L"))
    input_a = input_dict['pano']*sky
    sky_histc = torch.cat([input_a[i].histc()[10:] for i in reversed(range(3))])
    input_dict['sky_histc'] = sky_histc
    input_dict['sky_mask'] = sky

    for key in input_dict.keys():
        if isinstance(input_dict[key], torch.Tensor):
            input_dict[key] = input_dict[key].unsqueeze(0)

    args = ["--yaml=sat2density_cvact", "--test_ckpt_path=wandb/run-20230219_141512-2u87bj8w/files/checkpoint/model.pth", "--task=test_vid", "--demo_img=demo_img/case1/satview-input.png",
            "--sty_img=demo_img/case1/groundview.image.png", "--save_dir=output"]
    opt_cmd = options.parse_arguments(args=args)
    opt = options.set(opt_cmd=opt_cmd)
    opt.isTrain = False
    opt.name = opt.yaml if opt.name is None else opt.name
    opt.batch_size = 1

    m = importlib.import_module("model.{}".format(opt.model))
    model = m.Model(opt)

    # m.load_dataset(opt)
    model.build_networks(opt)
    ckpt = torch.load(opt.test_ckpt_path, map_location='cpu')
    model.netG.load_state_dict(ckpt['netG'])
    model.netG.eval()

    model.set_input(input_dict)
    
    model.style_temp = model.sky_histc
    opt.origin_H_W = [-(y_offset*256-128)/128, (x_offset*256-128)/128] # TODO: hard code should be removed in the future

    model.forward(opt)

    rgb = model.out_put.pred[0].clamp(min=0,max=1.0).cpu().detach().numpy().transpose((1,2,0))
    rgb = np.array(rgb*255, dtype=np.uint8)
    return  rgb

def get_video(sat_img, style_img, positions):
    name = ''
    for i in [name for name in os.listdir('demo_img') if 'case' in name]:
        style = Image.open('demo_img/{}/groundview.image.png'.format(i)).convert('RGB')
        style =np.array(style)
        if (style == style_img).all():
            name = i
            break

    input_dict = {}
    trans = transforms.ToTensor()
    input_dict['sat'] = trans(sat_img)
    input_dict['pano'] = trans(style_img)
    input_dict['paths'] = "demo.png"
    sky = trans(Image.open('demo_img/{}/groundview.sky.png'.format(name)).convert("L"))
    input_a = input_dict['pano']*sky
    sky_histc = torch.cat([input_a[i].histc()[10:] for i in reversed(range(3))])
    input_dict['sky_histc'] = sky_histc
    input_dict['sky_mask'] = sky

    for key in input_dict.keys():
        if isinstance(input_dict[key], torch.Tensor):
            input_dict[key] = input_dict[key].unsqueeze(0)

    args = ["--yaml=sat2density_cvact", "--test_ckpt_path=wandb/run-20230219_141512-2u87bj8w/files/checkpoint/model.pth", "--task=test_vid", "--demo_img=demo_img/case1/satview-input.png",
            "--sty_img=demo_img/case1/groundview.image.png", "--save_dir=output"]
    opt_cmd = options.parse_arguments(args=args)
    opt = options.set(opt_cmd=opt_cmd)
    opt.isTrain = False
    opt.name = opt.yaml if opt.name is None else opt.name
    opt.batch_size = 1

    m = importlib.import_module("model.{}".format(opt.model))
    model = m.Model(opt)

    # m.load_dataset(opt)
    model.build_networks(opt)
    ckpt = torch.load(opt.test_ckpt_path, map_location='cpu')
    model.netG.load_state_dict(ckpt['netG'])
    model.netG.eval()

    model.set_input(input_dict)
    
    model.style_temp = model.sky_histc

    unique_lst = list(dict.fromkeys(positions))
    pixels = []
    for x in positions:
        if x in unique_lst:
            if x not in pixels:
                pixels.append(x)
    pixels = np.array(pixels)
    tck, u = splprep(pixels.T, s=25, per=0)
    u_new = np.linspace(u.min(), u.max(), 80)
    x_new, y_new = splev(u_new, tck)
    smooth_path = np.array([x_new,y_new]).T

    rendered_image_list = []
    rendered_depth_list = []


    for i, (x,y) in enumerate(smooth_path):
        opt.origin_H_W = [(y-128)/128, (x-128)/128] # TODO: hard code should be removed in the future
        print('Rendering at ({}, {})'.format(x,y))
        model.forward(opt)

        rgb = model.out_put.pred[0].clamp(min=0,max=1.0).cpu().detach().numpy().transpose((1,2,0))
        rgb = np.array(rgb*255, dtype=np.uint8)
        rendered_image_list.append(rgb)

        rendered_depth_list.append(
            model.out_put.depth[0,0].cpu().detach().numpy()
        )

    output_video_path = 'output_video.mp4'

    frame_rate = 15
    frame_width = 512
    frame_height = 128

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_video_path, fourcc, frame_rate, (frame_width, frame_height))

    for image_np in rendered_image_list:
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        out.write(image_np)

    out.release()

    return "output_video.mp4"

def copy_image(image):
    return image

def show_image_and_point(image, x, y):
    x = int(x*image.shape[1])
    y = image.shape[0]-int(y*image.shape[0])
    mask = np.zeros(image.shape[:2])
    radius = min(image.shape[0], image.shape[1])//60
    for i in range(x-radius-2, x+radius+2):
        for j in range(y-radius-2, y+radius+2):
            if (i-x)**2+(j-y)**2<=radius**2:
                mask[j, i] = 1
    return (image, [(mask, 'render point')])

def add_select_point(image, evt: gr.SelectData, state1):
    if state1 == None:
        state1 = []
    x, y = evt.index
    state1.append((x, y))
    print(state1)
    radius = min(image.shape[0], image.shape[1])//60
    for i in range(x-radius-2, x+radius+2):
        for j in range(y-radius-2, y+radius+2):
            if (i-x)**2+(j-y)**2<=radius**2:
                image[j, i, :] = 0
    return image, state1

def reset_select_points(image):
    return image, []






with gr.Blocks() as demo:    
    gr.Markdown("# Sat2Density Demos")
    gr.Markdown("### select/upload the satllite image and select the style image")
    with gr.Row():
        with gr.Column():
            sat_img = gr.Image(source='upload', shape=[256, 256], interactive=True)
            img_examples = gr.Examples(examples=['demo_img/{}/satview-input.png'.format(i) for i in os.listdir('demo_img') if 'case' in i],
                inputs=sat_img, outputs=None, examples_per_page=20)
        with gr.Column():
            style_img = gr.Image()
            style_examples = gr.Examples(examples=['demo_img/{}/groundview.image.png'.format(i) for i in os.listdir('demo_img') if 'case' in i],
                inputs=style_img, outputs=None, examples_per_page=20)


    gr.Markdown("### select a certain point to generate single groundview image")
    with gr.Row():
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    slider_x = gr.Slider(0.2, 0.8, 0.5, label="x-axis position")
                    slider_y = gr.Slider(0.2, 0.8, 0.5, label="y-axis position")
                    btn_single = gr.Button(label="demo1")
                
                annotation_image = gr.AnnotatedImage()
    
        out_single = gr.Image()
        
    gr.Markdown("### draw a trajectory on the map to generate video")
    state_select_points = gr.State()
    with gr.Row():
        with gr.Column():
            draw_img = gr.Image(shape=[256, 256], interactive=True)  
        with gr.Column():
            out_video = gr.Video()
            reset_btn =gr.Button(value="Reset")
            btn_video = gr.Button(label="demo1")

    sat_img.change(copy_image, inputs = sat_img, outputs=draw_img)

    draw_img.select(add_select_point, [draw_img, state_select_points], [draw_img, state_select_points])
    sat_img.change(show_image_and_point, inputs = [sat_img, slider_x, slider_y], outputs = annotation_image)
    slider_x.change(show_image_and_point, inputs = [sat_img, slider_x, slider_y], outputs = annotation_image, show_progress='hidden')
    slider_y.change(show_image_and_point, inputs = [sat_img, slider_x, slider_y], outputs = annotation_image, show_progress='hidden')
    btn_single.click(get_single, inputs = [sat_img, style_img, slider_x, slider_y], outputs=out_single)
    reset_btn.click(reset_select_points, [sat_img], [draw_img, state_select_points])
    btn_video.click(get_video, inputs=[sat_img, style_img, state_select_points], outputs=out_video) # 触发


demo.launch()