Spaces:
Runtime error
Runtime error
import torch,os | |
from torch.utils.data.dataset import Dataset | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import re | |
from easydict import EasyDict as edict | |
def data_list(img_root,mode): | |
data_list=[] | |
if mode=='train': | |
split_file=os.path.join(img_root, 'splits/train-19zl.csv') | |
with open(split_file) as f: | |
list = f.readlines() | |
for i in list: | |
aerial_name=re.split(r',', re.split('\n', i)[0])[0] | |
panorama_name = re.split(r',', re.split('\n', i)[0])[1] | |
data_list.append([aerial_name, panorama_name]) | |
else: | |
split_file=os.path.join(img_root+'splits/val-19zl.csv') | |
with open(split_file) as f: | |
list = f.readlines() | |
for i in list: | |
aerial_name=re.split(r',', re.split('\n', i)[0])[0] | |
panorama_name = re.split(r',', re.split('\n', i)[0])[1] | |
data_list.append([aerial_name, panorama_name]) | |
print('length of dataset is: ', len(data_list)) | |
return [os.path.join(img_root, i[1]) for i in data_list] | |
def img_read(img,size=None,datatype='RGB'): | |
img = Image.open(img).convert('RGB' if datatype=='RGB' else "L") | |
if size: | |
if type(size) is int: | |
size = (size,size) | |
img = img.resize(size = size,resample=Image.BICUBIC if datatype=='RGB' else Image.NEAREST) | |
img = transforms.ToTensor()(img) | |
return img | |
class Dataset(Dataset): | |
def __init__(self, opt,split='train',sub=None,sty_img=None): | |
self.pano_list = data_list(img_root=opt.data.root,mode=split) | |
if sub: | |
self.pano_list = self.pano_list[:sub] | |
if opt.task == 'test_vid': | |
demo_img_path = os.path.join(opt.data.root, 'streetview/panos', opt.demo_img) | |
self.pano_list = [demo_img_path] | |
if sty_img: | |
assert opt.sty_img.split('.')[-1] == 'jpg' | |
demo_img_path = os.path.join(opt.data.root, 'streetview/panos', opt.sty_img) | |
self.pano_list = [demo_img_path] | |
self.opt = opt | |
def __len__(self): | |
return len(self.pano_list) | |
def __getitem__(self, index): | |
pano = self.pano_list[index] | |
aer = pano.replace('streetview/panos', 'bingmap/19') | |
if self.opt.data.sky_mask: | |
sky = pano.replace('streetview/panos','sky_mask').replace('jpg', 'png') | |
name = pano | |
aer = img_read(aer, size = self.opt.data.sat_size) | |
pano = img_read(pano,size = self.opt.data.pano_size) | |
if self.opt.data.sky_mask: | |
sky = img_read(sky,size=self.opt.data.pano_size,datatype='L') | |
input = {} | |
input['sat']=aer | |
input['pano']=pano | |
input['paths']=name | |
if self.opt.data.sky_mask: | |
input['sky_mask']=sky | |
black_ground = torch.zeros_like(pano) | |
if self.opt.data.histo_mode =='grey': | |
input['sky_histc'] = (pano*sky+black_ground*(1-sky)).histc()[10:] | |
elif self.opt.data.histo_mode in ['rgb','RGB']: | |
input_a = (pano*sky+black_ground*(1-sky)) | |
for idx in range(len(input_a)): | |
if idx == 0: | |
sky_histc = input_a[idx].histc()[10:] | |
else: | |
sky_histc = torch.cat([input_a[idx].histc()[10:],sky_histc],dim=0) | |
input['sky_histc'] = sky_histc | |
return input | |