# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, check out LICENSE.md # Differentiable Augmentation for Data-Efficient GAN Training # Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han # https://arxiv.org/pdf/2006.10738 # Modified from https://github.com/mit-han-lab/data-efficient-gans import torch import torch.nn.functional as F def apply_diff_aug(data, keys, aug_policy, inplace=False, **kwargs): r"""Applies differentiable augmentation. Args: data (dict): Input data. keys (list of str): Keys to the data values that we want to apply differentiable augmentation to. aug_policy (str): Type of augmentation(s), ``'color'``, ``'translation'``, or ``'cutout'`` separated by ``','``. """ if aug_policy == '': return data data_aug = data if inplace else {} for key, value in data.items(): if key in keys: data_aug[key] = diff_aug(data[key], aug_policy, **kwargs) else: data_aug[key] = data[key] return data_aug def diff_aug(x, policy='', channels_first=True, **kwargs): if policy: if not channels_first: x = x.permute(0, 3, 1, 2) for p in policy.split(','): for f in AUGMENT_FNS[p]: x = f(x, **kwargs) if not channels_first: x = x.permute(0, 2, 3, 1) x = x.contiguous() return x def rand_brightness(x, **kwargs): x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) return x def rand_saturation(x, **kwargs): x_mean = x.mean(dim=1, keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean return x def rand_contrast(x, **kwargs): x_mean = x.mean(dim=[1, 2, 3], keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean return x def rand_translation(x, ratio=0.125, **kwargs): shift_x, shift_y = int(x.size(2) * ratio + 0.5), int( x.size(3) * ratio + 0.5) translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) # noinspection PyTypeChecker grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(x.size(2), dtype=torch.long, device=x.device), torch.arange(x.size(3), dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) x = x_pad.permute(0, 2, 3, 1).contiguous()[ grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) return x def rand_cutout(x, ratio=0.5, **kwargs): cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) # noinspection PyTypeChecker grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(cutout_size[0], dtype=torch.long, device=x.device), torch.arange(cutout_size[1], dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) mask[grid_batch, grid_x, grid_y] = 0 x = x * mask.unsqueeze(1) return x def rand_translation_scale(x, trans_r=0.125, scale_r=0.125, mode='bilinear', padding_mode='reflection', **kwargs): assert x.dim() == 4, "Input must be a 4D tensor." batch_size = x.size(0) # Identity transformation. theta = torch.eye(2, 3, device=x.device).unsqueeze(0).repeat( batch_size, 1, 1) # Translation, uniformly sampled from (-trans_r, trans_r). translate = \ 2 * trans_r * torch.rand(batch_size, 2, device=x.device) - trans_r theta[:, :, 2] += translate # Scaling, uniformly sampled from (1-scale_r, 1+scale_r). scale = \ 2 * scale_r * torch.rand(batch_size, 2, device=x.device) - scale_r theta[:, :, :2] += torch.diag_embed(scale) grid = F.affine_grid(theta, x.size()) x = F.grid_sample( x.float(), grid.float(), mode=mode, padding_mode=padding_mode) return x AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'translation': [rand_translation], 'translation_scale': [rand_translation_scale], 'cutout': [rand_cutout], }