# Sat2Density: Faithful Density Learning from Satellite-Ground Image Pairs > [Ming Qian](https://qianmingduowan.github.io/), Jincheng Xiong, [Gui-Song Xia](http://www.captain-whu.com/xia_En.html), [Nan Xue](https://xuenan.net) > > IEEE/CVF International Conference on Computer Vision (ICCV), 2023 > > [Project](https://sat2density.github.io/) | [Paper](https://arxiv.org/abs/2303.14672) | [Data]() | [Install.md](docs/INSTALL.md) >

> drawing > drawing > drawing >

>

> drawing > drawing > drawing >

>

> drawing > drawing > drawing >

>

> drawing > drawing > drawing >

## Checkpoints Downloading > Two checkpoints for CVACT and CVUSA can be found from [thisurl](https://github.com/sat2density/checkpoints/releases). You can also run the following command to download them. ``` bash scripts/download_weights.sh ``` ## QuickStart Demo ### Video Synthesis #### Example Usage ``` python test.py --yaml=sat2density_cvact \ --test_ckpt_path=2u87bj8w \ --task=test_vid \ --demo_img=demo_img/case1/satview-input.png \ --sty_img=demo_img/case1/groundview.image.png \ --save_dir=results/case1 ``` #### ### Illumination Interpolation ``` python test.py --task=test_interpolation \ --yaml=sat2density_cvact \ --test_ckpt_path=2u87bj8w \ --sty_img1=demo_img/case9/groundview.image.png \ --sty_img2=demo_img/case7/groundview.image.png \ --demo_img=demo_img/case3/satview-input.png \ --save_dir=results/case2 ``` ## Train & Inference - *We trained our model using 1 V100 32GB GPU. The training phase will take about 20 hours.* - *For data preparation, please check out [data.md](dataset/INSTALL.md).* ### Inference To test Center Ground-View Synthesis setting If you want save results, please add --task=vis_test ```bash # CVACT python offline_train_test.py --yaml=sat2density_cvact --test_ckpt_path=2u87bj8w # CVUSA python offline_train_test.py --yaml=sat2density_cvusa --test_ckpt_path=2cqv8uh4 ``` To test inference with different illumination ```bash # CVACT bash inference/single_style_test_cvact.sh # CVUSA bash inference/single_style_test_cvusa.sh ``` To test synthesis ground videos ```bash bash inference/synthesis_video.sh ``` ## Training ### Training command ```bash # CVACT CUDA_VISIBLE_DEVICES=X python train.py --yaml=sat2density_cvact # CVUSA CUDA_VISIBLE_DEVICES=X python train.py --yaml=sat2density_cvusa ``` ## Citation If you use this code for your research, please cite ``` @inproceedings{qian2021sat2density, title={Sat2Density: Faithful Density Learning from Satellite-Ground Image Pairs}, author={Qian, Ming and Xiong, Jincheng and Xia, Gui-Song and Xue, Nan}, booktitle={ICCV}, year={2023} } ``` ## License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. For commercial use, please contact [mingqian@whu.edu.cn].